300 and 3000 /fb projections for 2-Higgs doublet models at the LHC

Chien-Yi Chen Brookhaven National Laboratory

C.-Y. C. and S. Dawson, PRD 87, 055016 (arXiv:1301.0309) C.-Y. C., S. Dawson, and M. Sher, (arXiv:1305.1624)

Snowmass @ Washington, Seattle June 30, 2013

Outline

- Introduction to two Higgs doublet models (2HDMs.)
- Constraints on 2HDMs
- Projections for the LHC
- Projections for the ILC
- Conclusions

Two Higgs Doublet Models (2HDMs)

• The most general Higgs potential with two Higgs doublets, Φ_1 and Φ_2 , and a Z_2 symmetry is:

$$V = m_{11}^2 \, \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \, \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ + \lambda_3 \, \Phi_1^{\dagger} \Phi_1 \, \Phi_2^{\dagger} \Phi_2 + \lambda_4 \, \Phi_1^{\dagger} \Phi_2 \, \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right].$$

A good review paper: [Branco, Ferreira, Lavoura, Rebelo, Sher, Silva]

• Apply a Z_2 symmetry, such that a fermion couples only to a single Higgs doublet. Free from tree level FCNCs. [S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).]

$$\Phi_1 \to -\Phi_1, \, \Phi_2 \to \Phi_2$$
 and $d \to -d, \, u \to u, \, e \to -e$. for the type II model

All the possible assignments:

Model	Type I	Type II	Lepton-specific	Flipped
Φ_1	-	<i>d</i> , ℓ	ℓ	d
Φ_2	u, d, ℓ	и	u, d	и, ℓ

[Logan, MacLennan, PRD81, 075016]

• An example of Type II: Supersymmetry

Two Higgs Doublet Models

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \qquad \langle \phi_i^0 \rangle = \begin{pmatrix} 0 \\ \frac{v_i}{\sqrt{2}} \end{pmatrix}$$

$$\phi_i^0 = \frac{v_i}{\sqrt{2}} + \frac{1}{\sqrt{2}} \left(\phi_i^{0,r} + i\phi_i^{0,i} \right)$$

- β : $\tan \beta \equiv \frac{v_2}{v_1}$
- \bullet α : The mixing angle between two CP-even neutral Higgs bosons.
- Five Higgs bosons: h, H, A, and H $^{\pm}$, $M_H > M_h$
- 6 parameters: $\alpha, \tan\beta, M_h, M_H, M_A, \text{ and } M_{H^{\pm}}$.
- Assume that the discovered SM-like Higgs is the lightest CP-even Higgs.

$$M_h = 125 \text{ GeV}$$

Two Higgs Doublet Models

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \qquad \langle \phi_i^0 \rangle = \begin{pmatrix} 0 \\ \frac{v_i}{\sqrt{2}} \end{pmatrix}$$

$$\phi_i^0 = \frac{v_i}{\sqrt{2}} + \frac{1}{\sqrt{2}} \left(\phi_i^{0,r} + i\phi_i^{0,i} \right)$$

- β : $\tan \beta \equiv \frac{v_2}{v_1}$
- \bullet α : The mixing angle between two CP-even neutral Higgs bosons.
- Five Higgs bosons: (h,H)A, and H^{\pm} , $M_H > M_h$
- 6 parameters: $\alpha, \tan\beta, M_h, M_H, M_A, \text{ and } M_{H^{\pm}}$.
- Assume that the discovered SM-like Higgs is the lightest CP-even Higgs.

$$M_h = 125 \text{ GeV}$$

The couplings of h and H to fermions and gauge bosons relative to the SM couplings:

	I	II	Lepton specific	Flipped
g_{hVV}	$\sin(\beta-\alpha)$	$\sin(\beta-\alpha)$	$\sin{(\beta-\alpha)}$	$\sin(\beta-\alpha)$
$g_{htar{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$
g_{HVV}	$\cos(\beta-\alpha)$	$\cos(\beta-\alpha)$	$\cos{(\beta-\alpha)}$	$\cos(\beta-\alpha)$
$g_{Htar{t}}$	sin α sin β	$\frac{\sin \alpha}{\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\beta}$
$g_{Hbar{b}}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$
$g_{H au^+ au^-}$	sin α sin β	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	<u>sin α</u> sin β

- Universal hVV couplings $\sin(\beta \alpha)$, and HVV couplings $\cos(\beta \alpha)$.
- Decoupling limit: $\sin(\beta \alpha) = 1$, $\sin \alpha = -\cos \beta$ and $\cos \alpha = \sin \beta$

The couplings of h and H to fermions and gauge bosons relative to the SM couplings:

	I	II	Lepton specific	Flipped
g_{hVV}	$\sin(\beta-\alpha)$	$\sin(\beta-\alpha)$	$\sin(\beta-\alpha)$	$\sin(\beta - \alpha)$
$g_{ht\bar{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$
g_{HVV}	$\cos(\beta-\alpha)$	$\cos(\beta-\alpha)$	$\cos{(\beta-\alpha)}$	$\cos(\beta-\alpha)$
$g_{Htar{t}}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$
$g_{Hbar{b}}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$
$g_{H au^+ au^-}$	$\frac{\sin \alpha}{\beta}$ $\sin \beta$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$

- Universal hVV couplings $\sin(\beta \alpha)$, and HVV couplings $\cos(\beta \alpha)$.
- Decoupling limit: $\sin(\beta \alpha) = 1$, $\sin \alpha = -\cos \beta$ and $\cos \alpha = \sin \beta$

The couplings of h and H to fermions and gauge bosons relative to the SM couplings:

	I	II	Lepton specific	Flipped
g_{hVV}	$\sin(\beta-\alpha)$	$\sin(\beta-\alpha)$	$\sin\left(oldsymbol{eta}-lpha ight)$	$\sin(\beta-\alpha)$
$g_{htar{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$
g_{HVV}	$\cos(\beta-\alpha)$	$\cos(\beta-\alpha)$	$\cos(\beta - \alpha)$	$\cos(\beta-\alpha)$
$g_{Htar{t}}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$
$g_{Hbar{b}}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$
$g_{H au^+ au^-}$	$\frac{\sin \alpha}{\beta}$ $\sin \beta$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\beta}$

- Universal hVV couplings $\sin(\beta \alpha)$, and HVV couplings $\cos(\beta \alpha)$.
- Decoupling limit: $\sin(\beta \alpha) = 1$, $\sin \alpha = -\cos \beta$ and $\cos \alpha = \sin \beta$

Constraints

- Flavor constraints:
 - $\Delta M_{B_d} \equiv M_{B_H} M_{B_L}$, $B_H(B_L)$ denotes the heaviest (lightest) of the mass eigenstates.
 - Model-independent bound: excludes $0 < \tan \beta \lesssim 0.5$

Shaded: excluded at 2 sigma. Red: excluded at 3 sigma.

For more flavor bounds: Mahmoudi et. al, 0907.1791

- Perturbative bound: Requiring $\frac{\lambda_1}{4\pi} < 1$, implies $\tan \beta < 7$
 - We focus on low $\tan \beta$ region in this study.

Measured signal strength

Moriond results

$$R_{\rm decay} \qquad \equiv \frac{\sum_{j} \sigma(pp \to j \to h) \times {\rm B}(h \to {\rm decay})|_{\rm observed}}{\sum_{j} \sigma(pp \to j \to h) \times {\rm B}(h \to {\rm decay})|_{\rm SM}}$$

- R=1 : Standard Model Higgs
- Measuring deviations of the couplings from the SM

χ^2 fit for the light Higgs

- SM limit: $\cos(\beta \alpha) = 0$
- Projection: assume that the SM is correct.
- systematics uncertainties $\sim \frac{1}{\sqrt{\mathcal{L}}}$

[CMS NOTE-2012/006]

- Type-I is not very constrained, since $g_{hf\bar{f}} = \frac{\cos \alpha}{\sin \beta} \sim \cos \alpha$ at large $\tan \beta$ region.
- χ^2 minima: close to SM limit.

Heavy Higgs searches

[arXiv: 1304.0213]

- Only H->WW/ZZ is considered.
- Excluded mass range $145 \sim 710$ GeV.
- Choose two mass points: 200 and 300 GeV, because bounds there are better.

Heavy Higgs searches

[arXiv: 1304.0213]

- Only H->WW/ZZ is considered.
- Excluded mass range $145 \sim 710$ GeV.
- Choose two mass points: 200 and 300 GeV, because bounds there are better.

M_H = 200 GeV

- Heavy Higgs mainly decays into WW and ZZ.
- difficult to exclude the region near $\cos(\beta \alpha) \sim 0$, since $g_{HVV} = \cos(\beta \alpha)$.

- Lepton-specific and flipped models give very similar results to the type-I and type-II models, respectively.
- An increase in luminosity will tightly constrain $\cos(\beta \alpha)$ for $\tan \beta < 4$ in the type-I model and will give a sufficient constraint for $\tan \beta < 4$ in the type-II model.

Comparisons with LHC coupling measurements

- Based on current measurements.
- A significant fraction of the previously allowed parameter-space in the type-I model is excluded by limits from heavy Higgs searches.
- For the type-II model, some of the remaining parameter-space is excluded, especially for small $tan\beta$.
- At M_H =300 GeV, due to the opening up of the H \rightarrow h h channel, the exclusion region is smaller than from M_H = 200 GeV.

Projected sensitivity for the ILC

[arXiv: 1207.2516 by M. Peskin]

[ILCTDR-VOLUME 2]

Observable	Expected Error			
ILC at 500 GeV with 500 fb ⁻¹				
$\sigma(Zh) \cdot BR(b\overline{b})$	0.018			
$\sigma(Zh)\cdot BR(c\overline{c})$	0.12			
$\sigma(Zh)\cdot BR(gg)$	0.14			
$\sigma(Zh)\cdot BR(WW)$	0.092			
$\sigma(Zh) \cdot BR(ZZ)$	0.25			
$\sigma(Zh)\cdot BR(au^+ au^-)$	0.054			
$\sigma(Zh)\cdot BR(\gamma\gamma)$	0.38			
$\sigma(WW) \cdot BR(bar{b})$	0.0066			
$\sigma(WW) \cdot BR(c\overline{c})$	0.062			
$\sigma(WW) \cdot BR(gg)$	0.041			
$\sigma(WW) \cdot BR(WW)$	0.026			
$\sigma(WW) \cdot BR(ZZ)$	0.082			
$\sigma(WW) \cdot BR(au^+ au^-)$	0.14			
$\sigma(WW) \cdot BR(\gamma\gamma)$	0.26			
$\sigma(t ar{t} h) \cdot BR(b ar{b})$	0.25			
ILC at 1 TeV with 1000 fb ⁻¹				
$\sigma(WW) \cdot BR(b\overline{b})$	0.0047			
$\sigma(WW) \cdot BR(c\overline{c})$	0.076			
$\sigma(WW) \cdot BR(gg)$	0.031			
$\sigma(WW) \cdot BR(WW)$	0.033			
$\sigma(WW) \cdot BR(ZZ)$	0.044			
$\sigma(WW) \cdot BR(au^+ au^-)$	0.035			
$\sigma(WW) \cdot BR(\gamma\gamma)$	0.10			
$\sigma(tar{t}h)\cdot BR(bar{b})$	0.087			

Projected sensitivity for the ILC

[arXiv: 1207.2516 by M. Peskin]

[ILCTDR-VOLUME 2]

Observable	Expected Error
ILC at 500 GeV with 500 fb^{-1}	
$\sigma(Zh) \cdot BR(b\overline{b})$	0.018
$\sigma(Zh) \cdot BR(c\overline{c})$	0.12
$\sigma(Zh)\cdot BR(gg)$	0.14
$\sigma(Zh) \cdot BR(WW)$	0.092
$\sigma(Zh) \cdot BR(ZZ)$	0.25
$\sigma(Zh)\cdot BR(au^+ au^-)$	0.054
$\sigma(Zh) \cdot BR(\gamma\gamma)$	0.38
$\sigma(WW) \cdot BR(b\overline{b})$	0.0066
$\sigma(WW) \cdot BR(c\overline{c})$	0.062
$\sigma(WW) \cdot BR(gg)$	0.041
$\sigma(WW) \cdot BR(WW)$	0.026
$\sigma(WW) \cdot BR(ZZ)$	0.082
$\sigma(WW) \cdot BR(au^+ au^-)$	0.14
$\sigma(WW) \cdot BR(\gamma\gamma)$	0.26
$\sigma(t ar{t} h) \cdot BR(b ar{b})$	0.25
ILC at 1 TeV with 1000 fb ⁻¹	
$\sigma(WW) \cdot BR(b\bar{b})$	0.0047
$\sigma(WW) \cdot BR(c\overline{c})$	0.076
$\sigma(WW) \cdot BR(gg)$	0.031
$\sigma(WW) \cdot BR(WW)$	0.033
$\sigma(WW) \cdot BR(ZZ)$	0.044
$\sigma(WW) \cdot BR(\tau^+\tau^-)$	0.035
$\sigma(WW) \cdot BR(\gamma\gamma)$	0.10
$\sigma(tar{t}h)\cdot BR(bar{b})$	0.087

Comparison between ILC 500 GeV and 1TeV

- Flipped model gives very similar result to the type II model, respectively.
- An increase in luminosity will constrain $\cos(\beta \alpha)$ and will give a sufficient constraint for small $\tan \beta$.

Comparison between ILC 500 TeV and LHC

Projections at 95% CL

- -- 3 ab⁻¹ Limit from Heavy Higgs Search, M_H=200 GeV
- 3 ab⁻¹ Limit from Higgs Coupling Measurements
- ILC $\sqrt{s} = 500 \text{ GeV}, L = 500 \text{ fb}^{-1}$

- The region between lines are allowed at 95% confidence level.
- The Flipped model has the similar results to the type-II model.
- Bounds from ILC are comparable to those from LHC.

Comparison between ILC 1 TeV and LHC

Projections at 95% CL

- -- 3 ab⁻¹ Limit from Heavy Higgs Search, M_H=200 GeV
- 3 ab⁻¹ Limit from Higgs Coupling Measurements
- •- ILC $\sqrt{s} = 1 \text{ TeV}, L = 1000 \text{ fb}^{-1}$

- The region between lines are allowed at 95% confidence level.
- The Flipped model has the similar results to the type-II model.
- Bounds from ILC are better than those from LHC. In particular, in the type-I model a large part of the parameter-space is excluded.

Conclusions

- We have considered four variations of 2HDMs, with a Z₂ Symmetry.
- Based on the LHC Higgs data only small regions of parameter-space can produce rates which are consistent with the experiments.
- The projected sensitivity with 300/fb and 3/ab is discussed and we found that it is possible to exclude more parameter-space in the 2HDMs with higher luminosities.
- LHC bounds on a heavy Higgs searches can further restrict the parameter-space. In particular, for the type-I model the allowed region is shrunk by more than a factor of two.
- Projections for ILC show that ILC at 1TeV with 1000 /fb can give better bounds than those from LHC light Higgs coupling measurements at 14 TeV with 3/ab, especially for type-I model.

Thank you!

Backup slides

M_H =300 GeV

• H \rightarrow h h becomes available: $\Gamma(H^0 \rightarrow h^0 h^0) = \frac{\lambda_{Hhh}^2}{8\pi M_H} \left(1 - \frac{4m_h^2}{M_H^2}\right)^{1/2}$

$$\lambda_{Hhh} = -\cos(\beta - \alpha) \left(\frac{\sin 2\alpha}{\sin 2\beta} \right) \frac{M_{H^0}^2 + 2M_{h^0}^2}{2v} \left\{ 1 - x \left(\frac{3}{\sin 2\beta} - \frac{1}{\sin 2\alpha} \right) \right\}$$

where
$$x \equiv 2\mu^2/(M_{H^0}^2 + 2M_{h^0}^2)$$
.

- x=0 case => No Flavor changing neutral current (FCNC).
- x is not equal to $0 \Rightarrow Z_2$ symmetry is softly-broken.
- Due to the opening up of the H \rightarrow h h channel, the exclusion region is smaller than from $M_H = 200$ GeV.

Soft-Z₂ breaking

- The region between lines are allowed at 95% confidence level.
- As x is increases above 0.25, the bounds become progressively weaker.