Hadron Colliders: Background simulation, Snowmass 2013

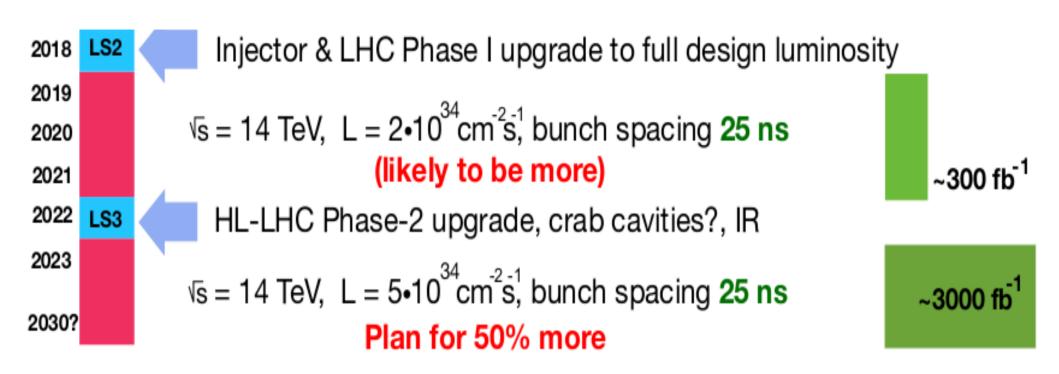
Snowmass Energy Frontier Workshop

University of Washington, Seattle, June 30 – July 3rd, 2013

Sanjay Padhi

University of California, San Diego

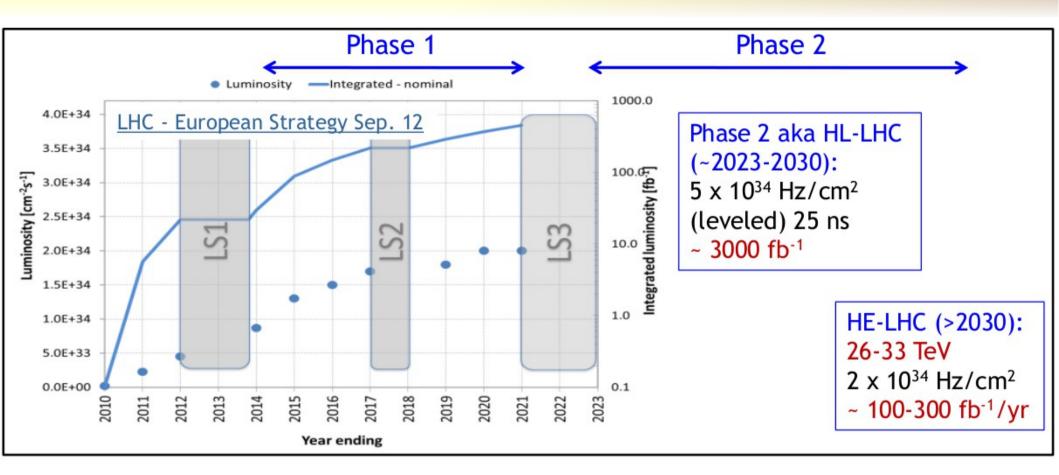
with


Aram Avetisyan, Kevin Black, Raymond Brock, Sergei Chekanov, Timothy Cohen,
James Hirschauer, Kiel Howe, Ashutosh Kotwal, Tom LeCompte, Sudhir Malik,
Patricia Mcbride, Kalanand Mishra, Meenakshi Narain, Jim Olsen, Michael E.
Peskin, Marko J. Slyz, John Stupak III, Alexandre Vaniachine, and Jay G. Wacker

Outline

• LHC evolution

- Simulation framework
- Common backgrounds for Snowmass
 - Event weights and cross section
 - Reconstructed objects
- OSG infrastructure and usage
- Summary and Conclusion


LHC Evolution

In addition for future energy frontier the following facilities are planned:

- 33 TeV pp collisions with >= 140 Pileups
- 100 TeV VLHC with 40 Pileups

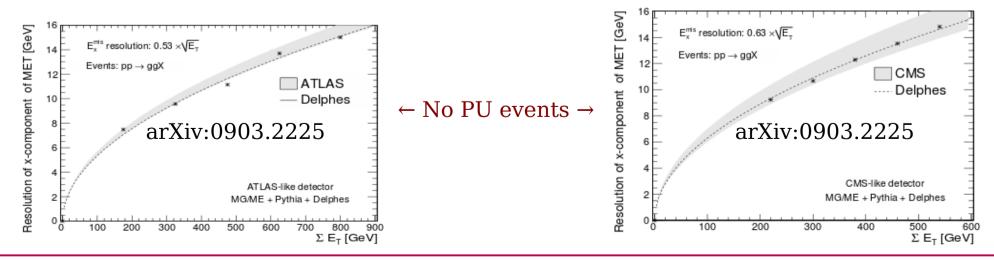
LHC Evolution

LHC Phase-I: 13/14 TeV pp collisions with 50 – 80 pileup events LHC Phase-II (HL-LHC): 13/14 TeV pp collisions with ~140 pileup events LS1-LS2 baseline: $0.8 \rightarrow 1.7 \ge 10^{34} \text{ Hz/cm}^2$ at 25 ns. ~300 fb⁻¹ by LS2 @ 13-14 TeV - Alternative with 1.8 $\ge 10^{34} \text{ Hz/cm}^2$ at 50 ns with lumi-leveling.

After LS2 injection chain upgrades: 25 ns will allow $\ge 2 \times 10^{34} \text{ Hz/cm}^2$

Simulation framework for Snowmass

For long range physics planning at Snowmass, we need to make a physics case


- with high luminosity running, higher energy, etc.

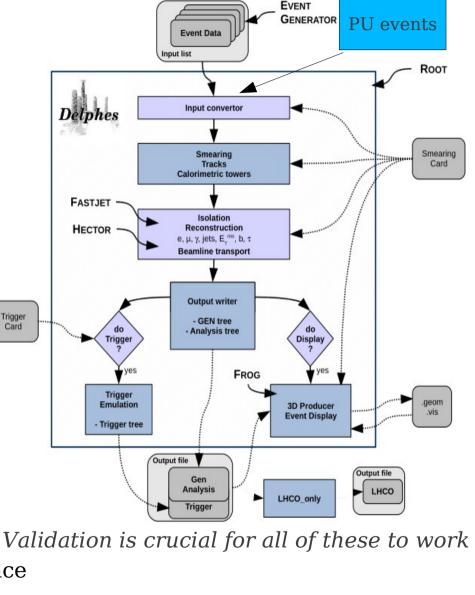
Experiments are currently re-evaluating their full detector simulation framework to

accommodate the expected HL performance with large pileup events.

For last EU strategy meeting:

- ATLAS: Simulates the present analyses with parametrized (smeared?) Phase-II detector response with large pileups
- CMS : Extrapolates present results assuming Phase-II detector
 - Data at HL-LHC ~ Same as 2012 data
 - The goal was to retain acceptance, resolution, background and fake rates.

Simulation framework for Snowmass

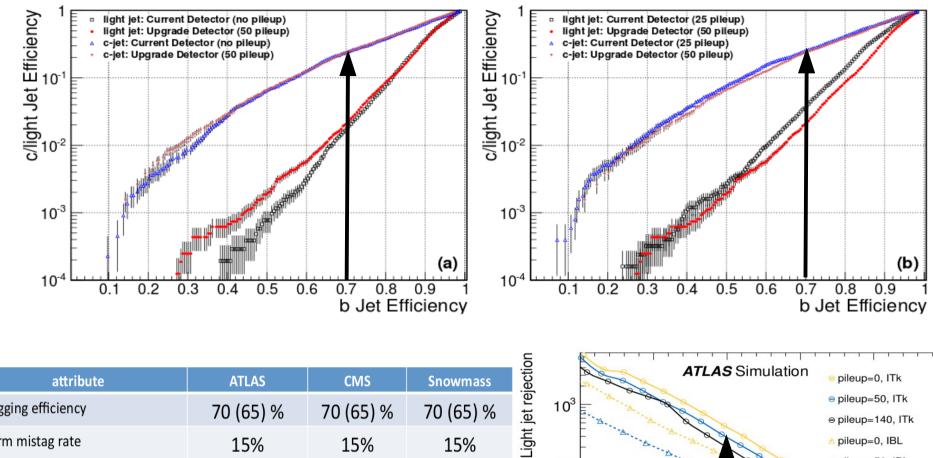

<u>Delphes-3 fast simulation</u> (https://cp3.irmp.ucl.ac.be/projects/delphes)

- Delphes3 supports addition of PU events
- Many improvements were motivated based on current studies
- For Phase-I studies:
- We use Delphes3 framework with:
 - realistic detector performance with PU = 50
 - parameterize using available full simulation
 - retain object performance as obtained using data
 - use best of both ATLAS/CMS performance (if publicly available)

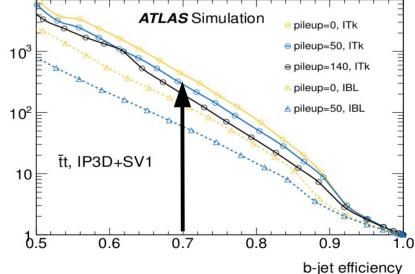
For Phase-II studies:

- use higher pileups 140
- assume the upgraded detector with best available performance
- use best of both ATLAS/CMS expected performance

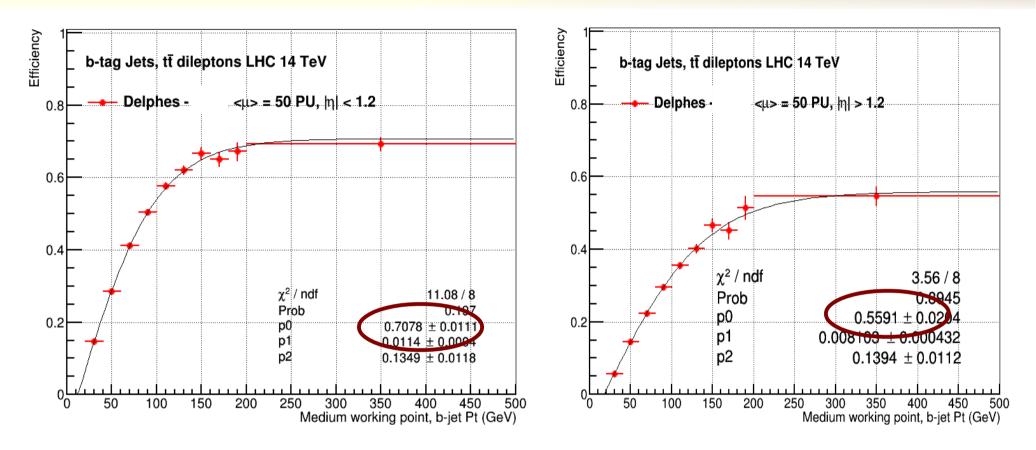
- pileup subtraction is done ala particle flow (for tracks), and jet Rho method for neutrals



6


Trigger Card

Object performance (Example: btag jets)


CMS-TDR-011

attribute	ATLAS	CMS	Snowmass
B tagging efficiency	70 (65) %	70 (65) %	70 (65) %
Charm mistag rate	15%	15%	15%
Light jet mistag rate	2% (1) %	2.5 (1) %	2% (1%)
Light jet mistag rate (upgrade)	0.5 (0.25) %	1 (0.5) %	0.5 (0.25) %

Object performance (Example: b-tag jets)

Overall b-tag efficiency: ~65% (barrel and endcap) after pileup subtraction:

PU = 50, Mistag = 1%, btag rate = 65%, c-fake ~ 10%

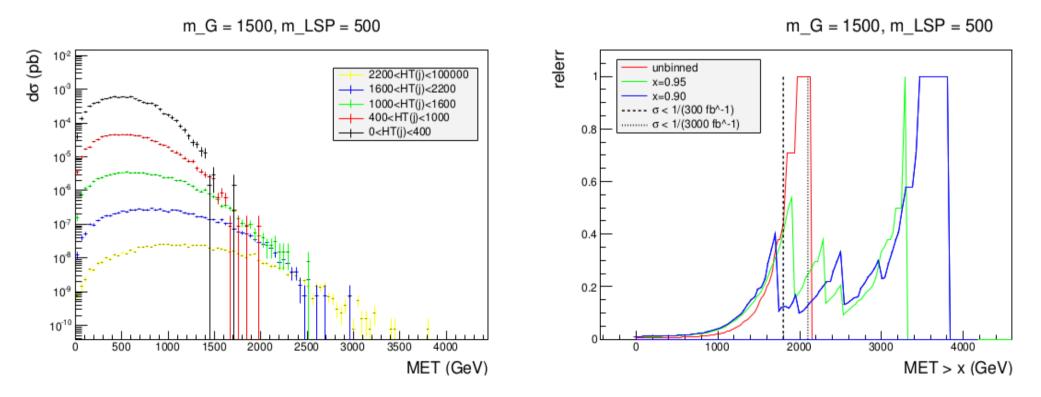
Efficiency in barrel = 70%, Mistag = 1%, c-fake ~ 15%
Efficiency in endcap = 56%, Mistag = 1%, c-fake ~ 15%
<u>More details:</u>

https://indico.bnl.gov/getFile.py/access?contribId = 51 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & r

June 30th, 2013. Snowmass Energy Frontier Workshop, Seattle

Inclusive samples using 13 and 33 TeV pp collisions are available

- http://red-gridftp11.unl.edu/Snowmass/Inclusive/Delphes-3.0.9.1/


<u>33 TeV</u>

			NoPileUp	50PileUp	140PileUp
Background	QCUT	Sigma <mark>pb</mark>	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)
DIPHOTONS_33TEV	40	249	7.06 (28.3)	7.06 (28.3)	4.18 (16.8)
PHOTONJETS_33TEV	40	2.23e+05	1.56 (0.00701)	1.55 (0.00697)	0.932 (0.00418)
SSWWJETS_33TEV	40	0.162	7.46 (4.62e+04)	7.56 (4.68e+04)	5.79 (3.58e+04)
TTBARW_33TEV	80	3.32	6.47 (1.95e+03)	6.61 (1.99e+03)	4.92 (1.48e+03)
TTBARZ_33TEV	80	6.21	0.0413 (6.66)	0.0399 (6.44)	0.0399 (6.44)
TTBARJets_33TEV	80	4.07e+03	5.79 (1.42)	5.78 (1.42)	3.42 (0.84)
WGJETS_33TEV	40	617	10.8 (17.5)	10.7 (17.3)	6.39 (10.4)
wjetsmad_33TEV	40	8.26e+04	7.75 (0.0938)	7.66 (0.0927)	4.89 (0.0592)
WWW_33TEV	40	1.05	8.87 (8.46e+03)	8.93 (8.51e+03)	5.42 (5.17e+03)
WWZ_33TEV	40	0.812	10.5 (1.3e+04)	10.4 (1.28e+04)	5.93 (7.31e+03)
WW_33TeV	40	159	11.4 (71.3)	11.2 (70.3)	6.65 (41.8)
WZ3LNUJETS_33TEV	40	3.46	7.58 (2.19e+03)	7.59 (2.19e+03)	4.34 (1.25e+03)
WZZ_33TEV	40	0.276	6.14 (2.23e+04)	6.12 (2.22e+04)	3.58 (1.3e+04)
WZ_33TeV	40	47.8	11.1 (233)	11.1 (231)	6.53 (136)
ZGJETS_33TEV	40	167	10.3 (62)	10.4 (62.1)	6.28 (37.6)
ZJETS_33TEV	40	7.87e+03	0.533 (0.0677)	0.536 (0.0682)	0.551 (0.07)
ZZ4LJETS_33TEV	40	0.277	8.32 (3e+04)	8.36 (3.02e+04)	4.92 (1.78e+04)
ZZJETS_33TEV	40	5.02	8.4 (1.67e+03)	8.38 (1.67e+03)	5.03 (1e+03)
ZZZ_33TEV	40	0.0462	6.38 (1.38e+05)	6.41 (1.39e+05)	3.83 (8.28e+04)

Difficult to simulate full statistics for samples with large cross-sections

June 30th, 2013. Snowmass Energy Frontier Workshop, Seattle

- ${\rm H}_{_{\rm T}}$ binned samples (with weights):
 - 1:1 MC generation will require large statistics (beyond the current scope)
 - $\sigma(t\bar{t}) \sim 900 \ pb$; one needs 2.7 (27) billion events for 300 (3000) fb⁻¹ of lumi
 - For 30% relative uncert. in tails, one needs 10x the equivalent stat.

Weighted sample reduces the error drastically in the tails

${\rm H}_{_{\rm T}}$ binned samples (with weights):

$$J = \{g, u, \bar{u}, d, \bar{d}, s, \bar{s}, c, \bar{c}, b, \bar{b}\}$$
$$L = \{e^+, e^-, \mu^+, \mu^-, \tau^+, \tau^-\}$$
$$B = \{W^+, W^-, Z^0, h^0, \gamma\}$$
$$T = \{t, \bar{t}\}$$

Binned in H_{T} :

Scalar sum p_T at gen-level
 Dominant: 4-7 bins of H_T
 Sub-dominant: 2-3 bins in H_T
 > 5M events per bin
 Rare backgrounds have

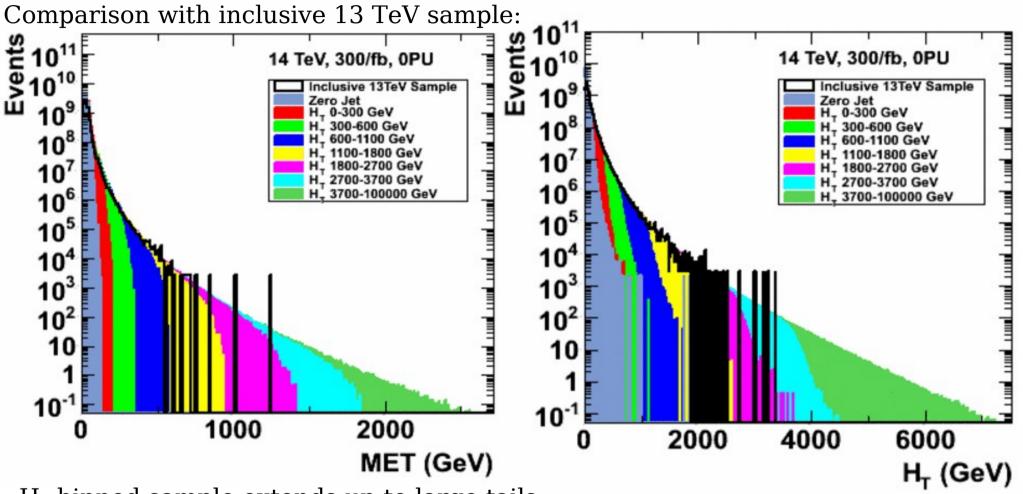
- No H_T binning

Process	Order	$14 { m TeV}$	$33 { m ~TeV}$	$100 { m TeV}$				
Dominant Backgrounds								
$B + n_4 J$	$\mathcal{O}(\alpha_s^{n_4}\alpha_w)$	SGLKp	SGk	\mathbf{sk}				
$TT + n_3 J$	$\mathcal{O}(\alpha_s^{2+n_3})$	SGlk	SGk	\mathbf{sk}				
$BB + n_2 J$	$\mathcal{O}(\alpha_s^{n_2}\alpha_w^2)$	SGlk	SGk	$_{\rm sk}$				
$TB + n_2J$	$\mathcal{O}(\alpha_s^{n_2+1}\alpha_w)$	SGlk	SGk	\mathbf{sk}				
$T + n_3 J$	$\mathcal{O}(\alpha_s^{n_3-1}\alpha_w^2)$	SGlk	SGk	\mathbf{sk}				
$LL + n_3J$	$\mathcal{O}(\alpha_s^{n_3}\alpha_w^2)$	SGlk	SGk	$_{\rm sk}$				
S	Subdominant	Backgro	unds					
$TTB + n_1J$	$\mathcal{O}(\alpha_s^{2+n_1}\alpha_w)$	SG	SG					
$BLL + n_1J$	$\mathcal{O}(\alpha_s^{n_1}\alpha_w^3)$	SG	SG					
$B + n_3 J$	$\mathcal{O}(\alpha_s^{n_3}\alpha_h)$	\mathbf{SG}	SG					
$B + n_3 J$	$\mathcal{O}(\alpha_s^{n_3-2}\alpha_w^3)$	\mathbf{SG}	SG					

${\rm H}_{_{\rm T}}$ binned samples (with weights):

http://www.snowmass2013.org/tiki-index.php?page=Energy_Frontier_FastSimulation

14 TeV (HT binned samples)


		NoPileUp	50PileUp	140PileUp		
Background	QCUT	Sigma pb	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)	Comments
tt-4p-0-600- v1510_14TEV	80	531	2.19 (4.13)	0.961 (1.81)	0.653 (1.23)	ttbar + jets, 0 < HT (GeV) < 600
tt-4p-600-1100- v1510_14TEV	80	42.5	14.3(337)	5.93 (139)	4.93 (116)	ttbar + jets, 600 < HT (GeV) < 1100
tt-4p-1100-1700- v1510_14TEV	80	4.48	13.6 (3.05e+03)	5.71 (1.27e+03)	4.94 (1.1e+03)	ttbar + jets, 1100 < HT (GeV) < 1700
tt-4p-1700-2500- v1510_14TEV	80	0.528	13.7 (2.6e+04)	5.72 (1.08e+04)	4.87 (9.21e+03)	ttbar + jets, 1700 < HT (GeV) < 2500
tt-4p-2500-100000- v1510_14TEV	80	0.0545	1 3.8 (2.52e+05)	5.46 (1e+05)	5.19 (9.51e+04)	ttbar + jets, 2500 < HT (GeV) < 100000

Statistics up to several ab^{-1} have been generated for 14 TeV collisions

Internal weights include NLO kfactors.

33 TeV and 100 TeV samples are in process (expect to be done within a week)

Location: http://red-gridftp11.unl.edu/Snowmass/HTBinned/Delphes-3.0.9.1/

 H_{T} binned sample extends up to large tails

Important for new physics searches with large MET and/or $\rm H_{\scriptscriptstyle T}$

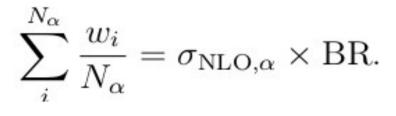
- Extrapolations based on low stat or (14/8) energy ratio's can have huge errors

http://www.snowmass2013.org/tiki-index.php?page=Energy_Frontier_FastSimulation

14 TeV (HT binned samples)

		NoPileUp	50PileUp	140PileUp		
Background	QCUT	Sigma pb	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)	Events Mil (Lumi 1/fb)	Comments
B-4p-0-1-v1510_14TEV	40	2.05e+05	30.2 (0.147)	11.3 (0.055)	10.7 (0.0521)	Boson (photon, W, Z) + Jets
Bj-4p-0-300- v1510_14TEV	40	3.44e+04	57.3 (1.67)	8.7 (0.253)	10.7 (0.31)	Boson (photon, W, Z) + Jets, 0 < HT (GeV) < 300
Bj-4p-300-600- v1510_14TEV	40	2.64e+03	41.4 (15.7)	6.32 (2.4)	7.25 (2.75)	Boson (photon, W, Z) + Jets, 300 < HT (GeV) < 600
Bj-4p-600-1100- v1510_14TEV	40	294	36.4 (124)	5.7 (19.4)	6.36 (21.6)	Boson (photon, W, Z) + Jets, 600 < HT (GeV) < 1100
Bj-4p-1100-1800- v1510_14TEV	40	25.9	35.9 (1.39e+03)	5.49 (212)	6.66 (257)	Boson (photon, W, Z) + Jets, 1100 < HT (GeV) < 1800
Bj-4p-1800-2700- v1510_14TEV	40	2.42	33.1 (1.37e+04)	5.07 (2.09e+03)	6.46 (2.67e+03)	Boson (photon, W, Z) + Jets, 1800 < HT (GeV) < 2700
Bj-4p-2700-3700- v1510_14TEV	40	0.227	32.9 (1.45e+05)	4.85 (2.14e+04)	6.02 (2.65e+04)	Boson (photon, W, Z) + Jets, 2700 < HT (GeV) < 3700
Bj-4p-3700-100000- v1510_14TEV	40	0.0276	33.6 (1.22e+06)	5.11 (1.85e+05)	5.91 (2.14e+05)	Boson (photon, W, Z) + Jets, 3700 < HT (GeV) < 100000
Bjj-vbf-4p-0-700- v1510_14TEV	40	86.5	18 (208)	7.07 (81.8)	6.47 (74.8)	Boson (photon, W, Z, h) + >= 2Jets, 0 < HT (GeV) < 700
Bjj-vbf-4p-700-1400- v1510_14TEV	40	4.35	13.7 (3.16e+03)	5.81 (1.34e+03)	5.26 (1.21e+03)	Boson (photon, W, Z, h) + >= 2Jets, 700 < HT (GeV) < 14000
Bjj-vbf-4p-1400-2300- v1510_14TEV	40	0.325	11.6 (3.56e+04)	5.02 (1.54e+04)	4.57 (1.41e+04)	Boson (photon, W, Z, h) + >= 2Jets, 1400 < HT (GeV) < 2300
Bjj-vbf-4p-2300-3400- v1510_14TEV	40	0.0303	4.12 (1.36e+05)	1.81 (5.98e+04)	1.78 (5.87e+04)	Boson (photon, W, Z, h) + >= 2Jets, 2300 < HT (GeV) < 3400

June 30th, 2013. Snowmass Energy Frontier Workshop, Seattle


Accessing Samples

- Browse metadata and ROOT files in http (slow sometimes):
- http://red-gridftp11.unl.edu/Snowmass/HTBinned/Delphes-3.0.9.1/140PileUp/tt-4p-0-600-v1510_14TEV/*.txt
- http://red-gridftp11.unl.edu/Snowmass/HTBinned/Delphes-3.0.9.1/140PileUp/tt-4p-0-600-v1510_14TEV/*.root
- Using storage resource manager (srm) from FNAL (need grid certificate)
- lcg-ls "srm://srm.unl.edu:8443/srm/v2/server?SFN=/mnt/hadoop/user/Snowmass/
- HTBinned/Delphes-3.0.9.1/NoPileUp/tt-4p-0-600-v1510_14TEV/"
- Access XRootD:
- TFile* file0 = TFile::Open("root://red-gridftp11.unl.edu//mnt/hadoop/user/ Snowmass/HTBinned/Delphes-3.0.9.1/50PileUp/tt-4p-0-600-v1510_14TEV/ tt-4p-0-600-v1510 14TEV 50PileUp 114845928.root")
- Transfer all root files in directory:
- wget --no-check-certificate -r -l1 -H -t1 -nd -N -np -A root -E
- http://red-gridftp11.unl.edu/Snowmass/HTBinned/
- Delphes-3.0.9.1/50PileUp/tt-4p-0-600-v1510_14TEV/

Event weights and cross sections

Event weights are in the ntuples (Event.Weight):

This can be combined using:

Accounts for NLO k-factor and event-by-event BR

Delphes->("Event.Weight") * (LO cross section) /

(Number of Delphes events processed)

Analyst knows this number

http://www.snowmass2013.org/tiki-index.php?page=Energy_Frontier_FastSimulation#HT_binned_samples

B-4p-0-1-v1510_14TEV	:	200944.68129	+-	25.15587
Bj-4p-0-300-v1510_14TEV	:	34409.92339	+_	10.65700
Bj-4p-300-600-v1510_14TEV	:	2642.85309	+-	1.13482
Bj-4p-600-1100-v1510_14TEV	:	294.12311	+-	0.13649
Bj-4p-1100-1800-v1510_14TEV	:	25.95000	+-	0.01344
Bj-4p-1800-2700-v1510_14TEV	:	2.42111	+-	0.00129
Bj-4p-2700-3700-v1510_14TEV	:	0.22690	+-	0.00016
Bj-4p-3700-100000-v1510 14TEV		0.02767	+-	0.00001

Software version and Cards for signal simulation

We use Delphes 3.0.9, with the following configuration along with 14/33/100 TeV pileup files

1. The src code can be found at:

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/spadhi/Snowmass/Delphes/Delphes-3.0.9.tar.gz?view=log

2. Pileup files at 14, 33 and 100 TeV

- http://uaf-2.t2.ucsd.edu/~spadhi/Snowmass/data/

3. Optimized simulation cards for 0, 50, 140 and VLHC (cvs head version)

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/spadhi/Snowmass/Cards/delphes_card_Snowmass_NoPileUp.tcl?view=log http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/spadhi/Snowmass/Cards/delphes_card_Snowmass_50PileUp.tcl?view=log http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/spadhi/Snowmass/Cards/delphes_card_Snowmass_140PileUp.tcl?view=log http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/spadhi/Snowmass/Cards/delphes_card_Snowmass_140PileUp.tcl?view=log

The detector performance remains the same (as shown during the BNL meeting) https://indico.bnl.gov/getFile.py/access?contribId=51&sessionId=2&resId=0&materialId=slides&confId=571

MC Truth information

By default we do not store all generated particles.

- Only status = 3 particles are stored (space reasons)

Change this behavior for your signal by editing the cards:

Change this:

module TreeWriter TreeWriter {

add Branch Delphes/allParticles Particle GenParticle add Branch StatusPid/filteredParticles Particle GenParticle

to this:

module TreeWriter TreeWriter {

add Branch Delphes/allParticles Particle GenParticle

add Branch StatusPid/filteredParticles Particle GenParticle

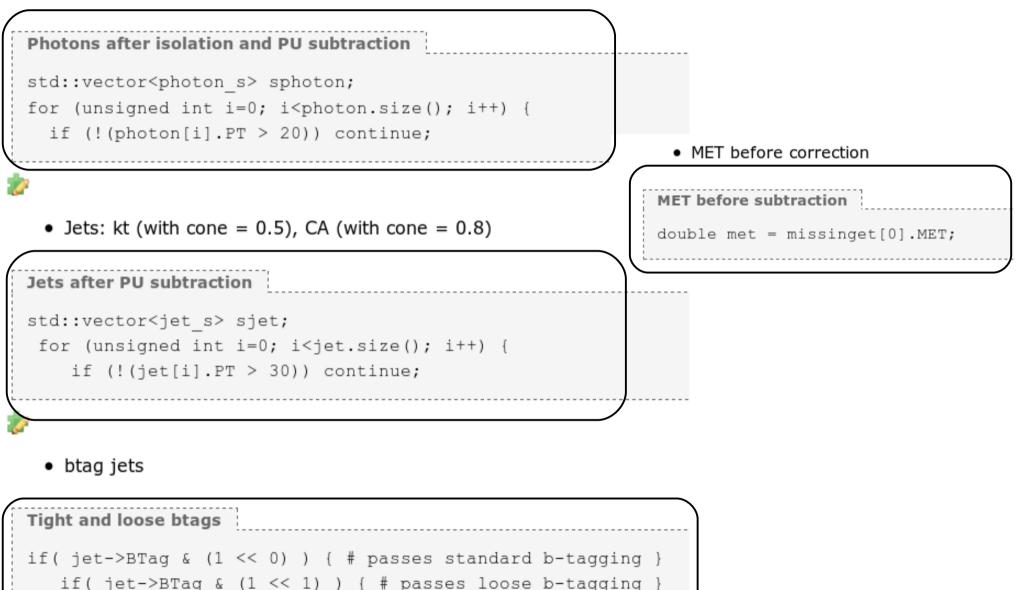
Reconstructed Objects

Electrons

```
Electrons after isolation
std::vector<electron s> selectron;
for (unsigned int i=0; i<electron.size(); i++) {</pre>
 if (!(electron[i].PT > 10)) continue;
 if (!(fabs(electron[i].Eta) < 2.5)) continue;

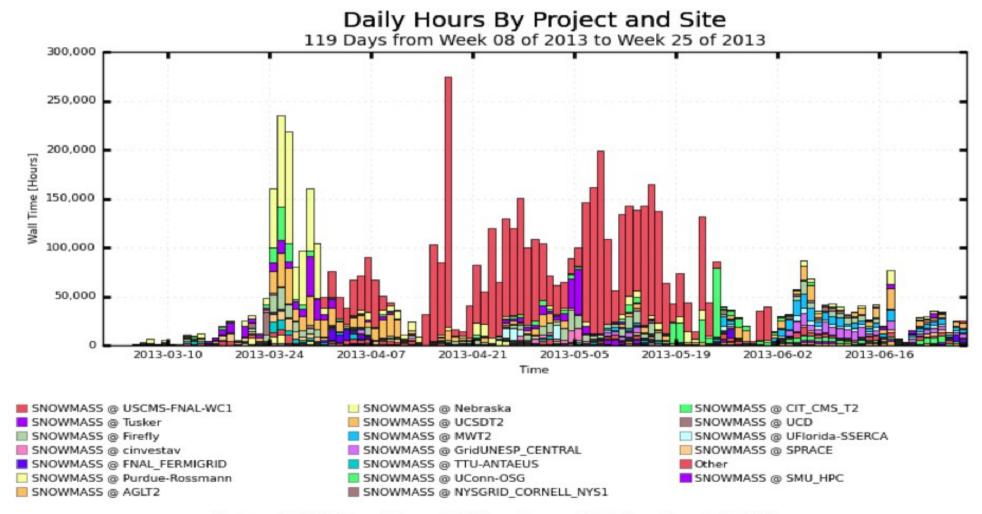
    Muons

Muons after isolation
std::vector<muon s> smuon;
for (unsigned int i=0; i<muon.size(); i++) {</pre>
  if (!(muon[i].PT > 10)) continue;

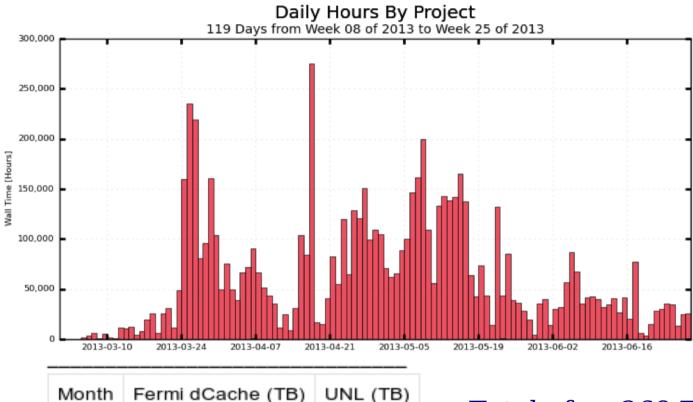

    Tau jets

taus
std::vector<jet s> taus;
for (unsigned int i=0; i<jet.size(); i++) {</pre>
  if (!(jet[i].PT > 20)) continue;
```

June 30th, 2013. Snowmass Energy Frontier Workshop, Seattle


Reconstructed Objects

Photons


OSG infrastructure and usage

We thank the Open Science Grid (OSG) and facilities such as ANL, BNL, FNAL and University of Nebraska (UNL) for providing their infrastructure and resources for the simulation.

Maximum: 275,182 Hours, Minimum: 2.70 Hours, Average: 59,976 Hours, Current: 25,374 Hours

OSG infrastructure and usage

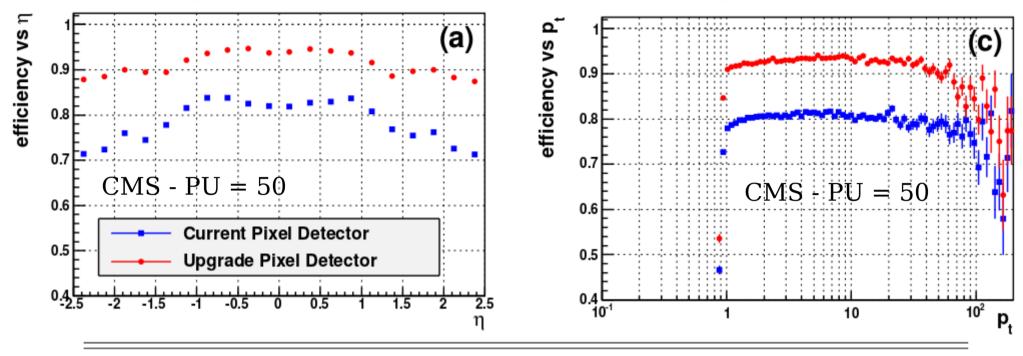
June	65.0	46.4
Мау	12.4	5.2
April	189.7	10.8
March	1.1	0.0

Total 268.3 62.5

Total of: ~ 268 TB used at FNAL Reduced size: 62.5 TB used at UNL

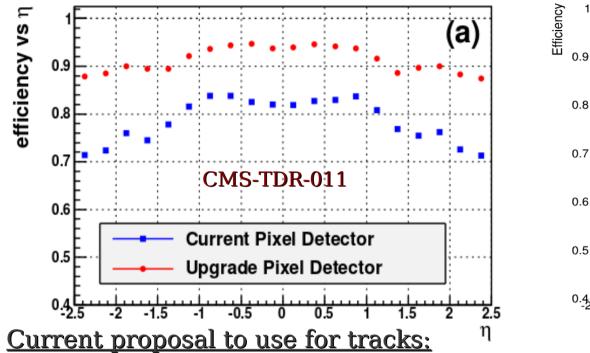
We plan for "compact samples":

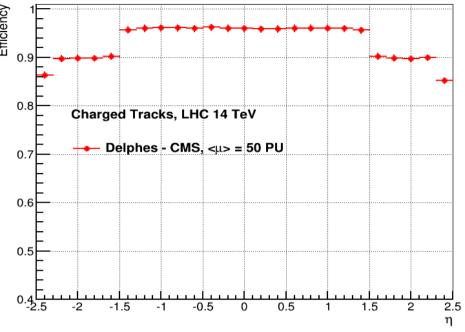
- with \sim few 10s of GB per dataset.


Summary and Outlook

- It was a huge effort to get \sim 3000 fb⁻¹ of events simulated using 14 TeV LHC
- We use parameterized simulation framework with pilups for snowmass studies
- All of 14 TeV simulations are completed
- We expect to finalize the 33 and 100 TeV simulation within a week (ASAP) Details on background samples can be found at: http://www.snowmass2013.org/tiki-index.php?%20page=Energy_Frontier_FastSimulation Object performance (with pileup) can be found in my BNL Snowmass talk:
- https://indico.bnl.gov/getFile.py/access?contribId = 51 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & materialId = slides & confId = 571 & sessionId = 2 & resId = 0 & resId = 0 & resId = 1 & resI
- Please cite the following articles in your white paper studies (we plan to submit the final paper to the arXiv soon):
- 1. "Snowmass Energy Frontier Simulations for Hadron Colliders", A. Avetisyan et. al. arXiv:1307.XXX, July 2013
- 2. "Standard Model Background Generation for Snowmass using Madgraph", A. Avetisyan et. al. arXiv:1307.XXX, July 2013

Backup slides


Tracking performance and expectations


CMS-TDR-011 : http://cds.cern.ch/record/1481838/files/CMS-TDR-011.pdf

Sample and Conditions		Tracking I	Efficiency (%)	Track Fake Rate (%)	
Sample	PU/DL/Cuts	Current	Upgrade	Current	Upgrade
Muon	0/No/Cleanup	97.4	98.1	0.0	0.0
Muon	0/Yes/Cleanup	93.9	97.9	0.0	0.0
Muon	50/No/Cleanup	90.1	94.9	0.22	0.17
Muon	50/Yes/Cleanup	81.5	94.4	0.23	0.17

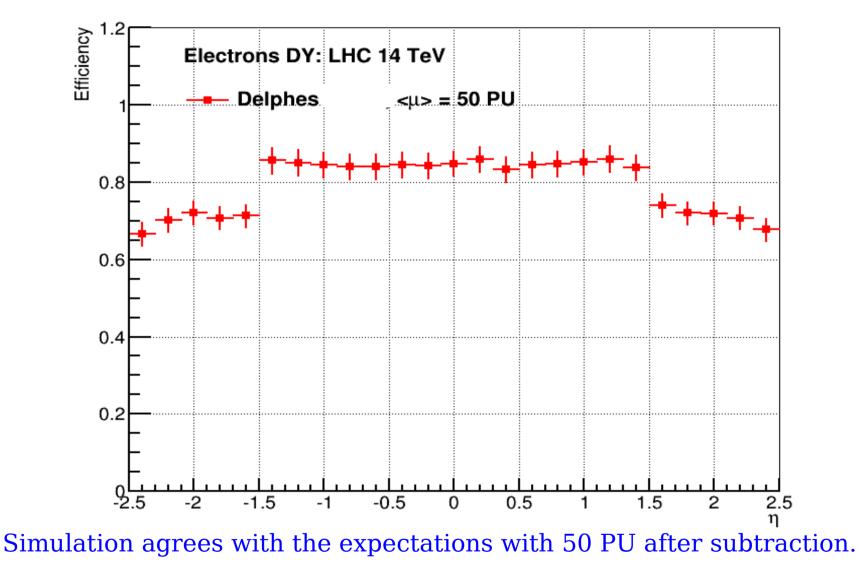
Tracking performance and expectations



attribute	ATLAS	CMS	Snowmass
Minimum track \textbf{p}_{T} to reach calorimeter	0.5 GeV	0.7 GeV	0.6 GeV
Tracking efficiency (DELPHES2)	97%	95%	96%
Muon Efficiency (DELPHES3)	95% / 85%	95% / 85%	95% / 85%
Muon Efficiency (upgrade)	95% / 85%	95% / 85%	95% / 85%
Electron & Pion Efficiency (upgrade)	95% / 85%	95% / 85%	95% / 85%
Momentum resolution @100 GeV (upgrade)	2%	1.5%	1.5%

June 30th, 2013. Snowmass Energy Frontier Workshop, Seattle

Electrons (CMS Full Simulation and data)


Electrons (cut based) with medium working point (CMS DP -2013/003)

Expected efficiency with 50 PU: ~80% (barrel) and 70% (endcap)

Electrons (Snowmass detector with parameterization)

Electrons (cut based) with medium working point (with 50 PU events)

We use_this for the combined Snowmass LHC detector