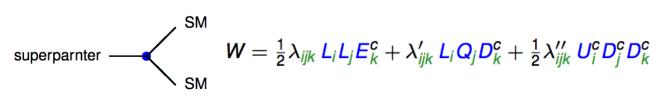
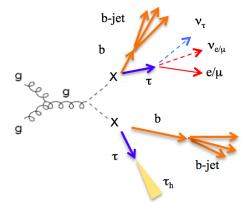
Sensitivity studies for 3rd generation LQ and RPV SUSY search

Keti Kaadze Fermilab

Outlook

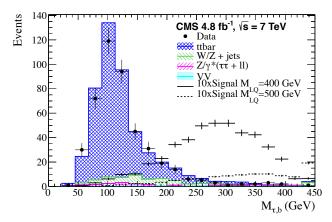

- Motivation: search for new physics in final state with tau leptons and b jets
 - Single/Vector LQ
 - RPV Stop
- Review of the previously published analysis and results
- Current sensitivity studies and results
- Conclusion

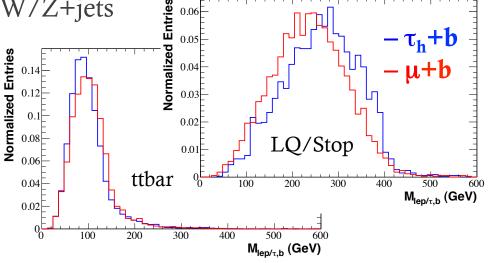


Motivation

- Symmetries between leptons and quarks motivate existence of boson fields mediating lepton-quark interaction
 - GUT, Composite models Leptoquarks
 - R-parity violating SUSY squarks or sleptons

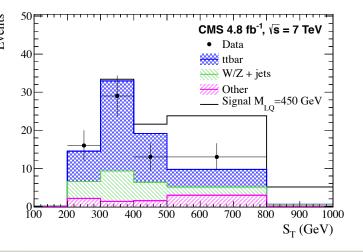
- Dominant production of pair of heavy particles is via QCD interactions
 - Cross section depends only on mass of a particle
- Pair production of third generation LQ or Stops are studied
 - Signature with two τ leptons and two b jets: $e\tau_h + 2b$ -jets and $\mu\tau_h + 2b$ -jets


Overview of 7 TeV analysis



Major backgrounds -- ttbar and W/Z+jets processes

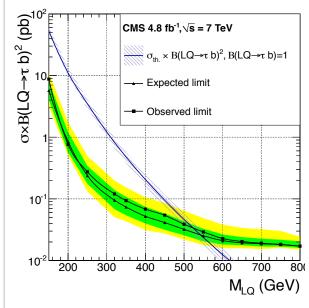
• Invariant mass of τ_h and b-jet

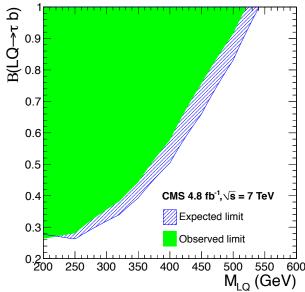

$$M(\tau_h, b) = \sqrt{(E_{\tau_h} + E_b)^2 - (\vec{p}_{\tau_h} + \vec{p}_b)^2}$$

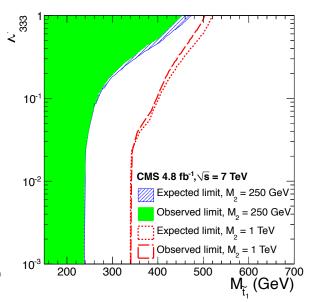
Search for excess over the SM background in S_T distribution

$$ST = p_T(\tau_h) + p_T(\mu) + p_T(bjet_1) + p_T(bjet_2)$$

Results on LQ3/RPV Stop


- Scalar LQ/Stops with RPV decay with masses below 525 GeV are excluded at 95% C.L.


 PRL 110, 081801 (2013)
 - Limits are set on RPV coupling λ'_{333} for


• Limits are set on RPV coupling λ'_{333} for a given benchmark scenario

Benchmark:

- heavy or light M₂
- Higgsino mixing $\mu = 380 \text{ GeV}$
- $\tan \beta \sim 40$ and mixing angle ~ 0

Sensitivity Studies

- What higher center of mass (CM) machine can offer
 - Higher cross sections and thus a higher mass reach
 - Much higher pileup (PU)
 - Effects on the efficiency might be noticeable, but at high-p_T we expect them to be less drastic
- Outline of the work presented today
 - Use signal and background MC samples: Delphes 3.0.9, $\sqrt{s}=14$ TeV
 - NLO cross sections

The first studies were done for BNL EF meeting https://indico.bnl.gov/getFile.py/access? contribId=129&sessionId=12&resId=0&materialId=slides&confI d=571

- Officially provided by fast-simulation team, summarized at http://home.fnal.gov/~jhirsch/snowmass/pythia_cross_sections_14tev.txt
- LQ Signal sample was generated for 14 TeV with old PU scenario *arXiv:* 0411038, *Phys.Rev.D71:057503,2005*

Analysis strategy

- Select events with and $\mu\tau_h + 2b$ -jets
 - Kinematic selection
 - All objects are separated by at least $\Delta R = 0.5$
 - μ and τ_h must have opposite charges

	pT >	η <
μ	30 GeV	2.1
$ au_{ m h}$	50 GeV	2.3
bjets	30 GeV	2.4

- Topological cuts to reject ttbar and V+jets backgrounds
 - $M(\tau_h b) > X \text{ GeV}$ and ST > Y GeV
 - Thresholds are obtained for each signal mass (M) hypothesis based on optimization:
 X=0.5M; Y=1.25M

$$M(\tau_h, b) = \sqrt{(E_{\tau_h} + E_b)^2 - (\vec{p}_{\tau_h} + \vec{p}_b)^2}$$

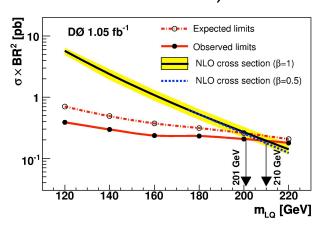
$$ST = p_T(\tau_h) + p_T(\mu) + p_T(bjet_1) + p_T(bjet_2)$$

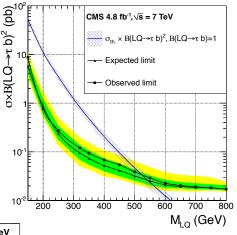
• Count signal and background events after the final selection

Systematic Uncertainties

- Analysis is statistics dominated, thus systematic uncertainties do not affect on final result much. In anyways,
 - considered following for 50 PU-300 fb⁻¹ scenario
 - Uncertainties due to object ID and mis-isdentification rate are inflated by 50% for 140 PU-3000 fb-1 scenario

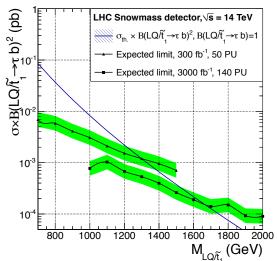
Source	uncertainty
Luminosity	4%
Tau ID	10%
b ID	5%
Mistag rate	10%
tt normalization	15%
jet faking tau	30%


Results


• Previous results:

- D0 with 1 fb⁻¹ excludes
 ~200 GeV masses
- CMS with 5 fb⁻¹ at 7 TeV excludes ~500 GeV

$D0 - \sqrt{s} = 1.96 \text{ TeV}, 1.1 \text{ fb}^{-1}$


CMS – \sqrt{s} =7 TeV, 4.8 fb⁻¹

Expected exclusion at

- 1.3 TeV with 300 fb⁻¹
- 1.7 TeV with 3000 fb⁻¹

Note: These results are obtained from only $\mu\tau_h$ +2b-jets channel. Factor of two improvement in σXB limit is expected by adding $e\tau_h$ +2b-jets channel

LHC Snowmass detector – \sqrt{s} =14 TeV,

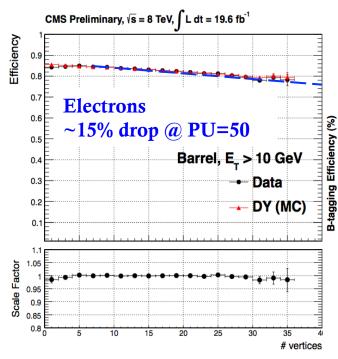
- * 300 fb⁻¹
- * 3000 fb⁻¹

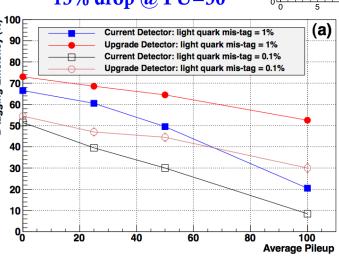
Summary

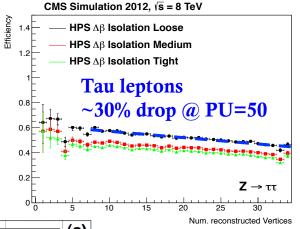
- The sensitivity studies for pair-production of RPV Stop/LQ3→tau+b were presented
 - The Delphes 3.0.9 parameterized simulation of background and signal samples where used
 - The selection criteria was optimized for each signal hypothesis
 - Systematic uncertainties were taken into account
- Expected exclusion of these particles are at 1.3 TeV and 1.7 TeV for 300 fb⁻¹ (50PU) and 3000 fb⁻¹ (140PU) scenario, respectively, at \sqrt{s} =14 TeV

Many thanks to

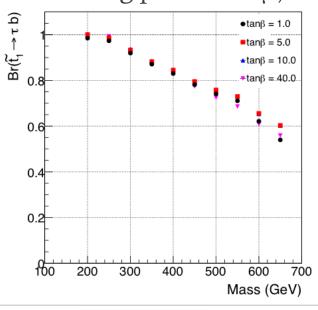
- * The team of experts for producing the background samples and providing guidance on how to use those
- * Jared Evans for producing signal samples for my analysis

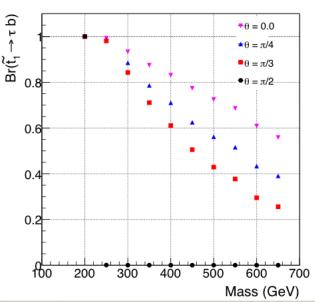

BACKUP

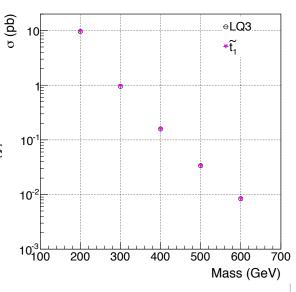

Object ID performance



• High PU is expected to degrade capabilities to identify physics objects: leptons, hadronic tau leptons, and b-jets


These performances are averaged over p_T
→ gives conservative estimate of efficiencies at high PU for heavy resonance searches




Stop vs LQ

- Cross sections agree within a couple of percent for heavy gluino scenario
 - Dependence on $\tan \beta$ and stop mixing angle is small
- Branching fraction is strongly dependent on various parameters: SU(2) gaugino mass M_2 , Higgsino mixing parameter μ , stop mixing angle, etc.

