pMSSM Scenarios in view of Direct Dark Matter Searches and the LHC Marco Battaglia in collaboration with A Arbey, F Mahmoudi Snowmass 2013 Community Summer Study Energy Frontier Workshop, U. of Washington – Seattle – June 30th, 2013 Several direct detection dark matter search experiments reported excess of events corresponding to a light WIMP with large scattering cross section; Interpretation of these possible signals within the MSSM controversial due to LEP constraints on new particles with mass below 45 GeV; Need the χ to be bino-liko to evade LEP Γ_z constraints; Relic density requires small mass splitting with NLSP for efficient co-annihilation; Of the possible scenarios: light charginos are excluded by the LEP2 bounds while a light sbottom can evade the LEP2 bounds and reduce $\Omega_\chi h^2$ Study these scenarios using pMSSM scans and including flavour physics, LEP, Ωh^2 , LHC Higgs and SUSY search results; Important interplay between DM in direct detection and relic density and Higgs; This presentation updates earlier published results in view of the recent CDMS and LHC Higgs results. Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169 Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169 # LHC Higgs Mass and Signal Strength Constraints | Parameter | Value | Experiment | |----------------------|-----------------|-------------------| | $M_h \text{ (GeV)}$ | 125.7 ± 0.4 | ATLAS[49]+CMS[43] | | $\mu_{\gamma\gamma}$ | 1.20 ± 0.30 | ATLAS[40]+CMS[41] | | μ_{ZZ} | 1.10 ± 0.22 | ATLAS[42]+CMS[43] | | μ_{WW} | 0.77 ± 0.21 | ATLAS[44]+CMS[45] | Impose χ^2 probability from LHC measurements on selected pMSSM points #### The pMSSM Points, CDMS and the Earlier Results #### Light Sbottom Scenario A very light b_1 is possible if b_R is light, the mixing angle θ_b is large and the b_1 is mostly b_R , it is interesing that this condition ensures at the same time the decoupling of b_1 from the Z realising some kind of "sbottom miracle" Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169 ### Dark Matter: Scattering Cross Sections and Relic Density #### Non SM Higgs Decays ## Higgs Decays and Signal Strengths Simulate WH events with Pythia8, fast simulation with Delphes 3, comparison of $h \rightarrow bb$ and $h \rightarrow b_1b_1$ decays: #### Light sbottom and Direct LHC Searches Despite large cross section pp \rightarrow b₁b₁ escapes detection in SUSY analysis due to the small jet p_T and low MET ($\varepsilon \sim 2 \times 10^{-5}$) (Pythia 8 +Delphes 3 simulation): Cuts of ATLAS-CONF-2013-053 compared to kinematics of pp \rightarrow b₁b₁ events in this scenario (similarly for the CMS b jets + MET α_{T} analysis of CMS-SUS-12-028) #### Conclusions MSSM offers solutions compatible with a light WIMP as implied by CDMS and other data, if reported events are due to DM scattering; Light, almost degenerate sbottom scenario still viable in view of LEP and LHC constraints; Important interplay between dark matter and Higgs sector through scattering WIMP cross section, relic density and invisible Higgs decays to be systematically pursued in coming years; Sizeable $h \rightarrow b_1b_1$ rate will provide good test once $h \rightarrow bb$ will have been established and signal strengths measured; Interesting opportunities for dedicated searches of light sbottoms at LHC and a future lepton collider.