pMSSM Scenarios in view of Direct Dark Matter Searches and the LHC

Marco Battaglia

in collaboration with A Arbey, F Mahmoudi

Snowmass 2013 Community Summer Study Energy Frontier Workshop, U. of Washington – Seattle – June 30th, 2013 Several direct detection dark matter search experiments reported excess of events corresponding to a light WIMP with large scattering cross section;

Interpretation of these possible signals within the MSSM controversial due to LEP constraints on new particles with mass below 45 GeV;

Need the χ to be bino-liko to evade LEP Γ_z constraints;

Relic density requires small mass splitting with NLSP for efficient co-annihilation;

Of the possible scenarios: light charginos are excluded by the LEP2 bounds while a light sbottom can evade the LEP2 bounds and reduce $\Omega_\chi h^2$

Study these scenarios using pMSSM scans and including flavour physics, LEP, Ωh^2 , LHC Higgs and SUSY search results;

Important interplay between DM in direct detection and relic density and Higgs;

This presentation updates earlier published results in view of the recent CDMS and LHC Higgs results.

Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169

Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169

LHC Higgs Mass and Signal Strength Constraints

Parameter	Value	Experiment
$M_h \text{ (GeV)}$	125.7 ± 0.4	ATLAS[49]+CMS[43]
$\mu_{\gamma\gamma}$	1.20 ± 0.30	ATLAS[40]+CMS[41]
μ_{ZZ}	1.10 ± 0.22	ATLAS[42]+CMS[43]
μ_{WW}	0.77 ± 0.21	ATLAS[44]+CMS[45]

Impose χ^2 probability from LHC measurements on selected pMSSM points

The pMSSM Points, CDMS and the Earlier Results

Light Sbottom Scenario

A very light b_1 is possible if b_R is light, the mixing angle θ_b is large and the b_1 is mostly b_R , it is interesing that this condition ensures at the same time the decoupling of b_1 from the Z realising some kind of "sbottom miracle"

Arbey, MB, Mahmoudi, EPJC 72 (2012) 2169

Dark Matter: Scattering Cross Sections and Relic Density

Non SM Higgs Decays

Higgs Decays and Signal Strengths

Simulate WH events with Pythia8, fast simulation with Delphes 3, comparison of $h \rightarrow bb$ and $h \rightarrow b_1b_1$ decays:

Light sbottom and Direct LHC Searches

Despite large cross section pp \rightarrow b₁b₁ escapes detection in SUSY analysis due to the small jet p_T and low MET ($\varepsilon \sim 2 \times 10^{-5}$) (Pythia 8 +Delphes 3 simulation):

Cuts of ATLAS-CONF-2013-053 compared to kinematics of pp \rightarrow b₁b₁ events in this scenario (similarly for the CMS b jets + MET α_{T} analysis of CMS-SUS-12-028)

Conclusions

MSSM offers solutions compatible with a light WIMP as implied by CDMS and other data, if reported events are due to DM scattering;

Light, almost degenerate sbottom scenario still viable in view of LEP and LHC constraints;

Important interplay between dark matter and Higgs sector through scattering WIMP cross section, relic density and invisible Higgs decays to be systematically pursued in coming years;

Sizeable $h \rightarrow b_1b_1$ rate will provide good test once $h \rightarrow bb$ will have been established and signal strengths measured;

Interesting opportunities for dedicated searches of light sbottoms at LHC and a future lepton collider.