In collaboration with M.Berggren, T. Han, Jenny List, Sanjay Padhi, Tomohiko Tanabe

Shufang Su • U. of Arizona

Exploring LHC/ILC reach for the electroweak sector of MSSM gauginos, Higgsinos with the help of the Higgs boson

In collaboration with M.Berggren, T. Han, Jenny List, Sanjay Padhi, Tomohiko Tanabe

Shufang Su • U. of Arizona

Exploring LHC/ILC reach for the electroweak sector of MSSM gauginos, Higgsinos with the help of the Higgs boson

Comprehensive scan in M₁, M₂ and mu and study both LHC/ILC prospects of discovery/exclusion reach for neutralinos/charginos.

Sanjay Padhi, Tomohiko Tanabe

In collaboration with M.Berggren, T. Han, Jenny List, Sanjay Padhi, Tomohiko Tanabe

ぶ Shufang Su • U. of Arizona

Tomohiko Tanabe: Joint LHC-ILC Studies-Electroweakino Scan

In collaboration with M.Berggren, T. Han, Jenny List, Sanjay Padhi, Tomohiko Tanabe

Motivation

- Higgs connection
 - natural SUSY: light gauginos and Higgsinos
- DM connection
 - neutralinos: DM candidate
- Colored superparticle might be very heavy
 - no indication from current LHC search: m_{sq}, m_{gluino} > 1 TeV
 - EW sector (+stop/sbottoms) might be the only particles accessible at the LHC
- Neutralinos and Charginos
 - suffer from small electroweak production
 - current search mostly focused on slepton assisted channels
 - current reach of neutralino/chargino w/o slepton: limited
- Connection to Lepton Collider

CMS limits

CMS PAS SUS-12-022

S. Su

CMS limits

S. Su

CMS limits

4

MSSM EW-ino sector 101

Order of M_1 , M_2 and μ

LSP(s): usual LSP+degenerate states NLSP(s): 2nd set low-lying (degenerate) states

Case AI: Bino LSP-Wino NLSP $M_1 < M_2 < \mu$ Case AII: Bino LSP-Higgsino NLSP $M_1 < \mu < M_2$

Case BI: Wino LSP-Bino NLSP $M_2 < M_1 < \mu$ Case BII: Wino LSP-Higgsino NLSP $M_2 < \mu < M_1$

Case CI: Higgsino LSP-Bino NLSP $\mu < M_1 < M_2$ Case CII: Higgsino LSP-Wino NLSP $\mu < M_2 < M_1$

LSP(s): usual LSP+degenerate states NLSP(s): 2nd set low-lying (degenerate) states

Case AI: Bino LSP-Wino NLSP $M_1 < M_2 < \mu$ Case AII: Bino LSP-Higgsino NLSP $M_1 < \mu < M_2$

Case BI: Wino LSP-Bino NLSP $M_2 < M_1 < \mu$

Case BII: Wino LSP-Higgsino NLSP $M_2 < \mu < M_1$

Case CI: Higgsino LSP-Bino NLSP $\mu < M_1 < M_2$ Case CII: Higgsino LSP-Wino NLSP $\mu < M_2 < M_1$

LSP(s): usual LSP+degenerate states NLSP(s): 2nd set low-lying (degenerate) states

Case AI: Bino LSP-Wino NLSP $M_1 < M_2 < \mu$ Case AII: Bino LSP-Higgsino NLSP $M_1 < \mu < M_2$

Case BI: Wino LSP-Bino NLSP $M_2 < M_1 < \mu$

Case BII: Wino LSP-Higgsino NLSP $M_2 < \mu < M_1$

Case CI: Higgsino LSP-Bino NLSP $\mu < M_1 < M_2$

Case CII: Higgsino LSP-Wino NLSP $\mu < M_2 < M_1$

Small NLSP production at LHC: unobservable nearly degenerate LSP pair productions at ILC: Unique opportunity!

decay occur via mixing through Higgsino
M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
h, G⁰ as mixture of H_u⁰ and H_d⁰

$$h = -\sqrt{2} \quad (s_{\beta} \operatorname{Re}(H_u^0) + c_{\beta} \operatorname{Re}(H_d^0)),$$
$$G^0 = \sqrt{2} \quad (s_{\beta} \operatorname{Im}(H_u^0) - c_{\beta} \operatorname{Im}(H_d^0)).$$

$$\Gamma(\chi_2^0 \to \chi_1^0 h) \propto \left(2s_{2\beta} + \frac{M_2}{\mu}\right)^2 \left[(M_2 + M_1)^2 - m_h^2\right],$$

$$\Gamma(\chi_2^0 \to \chi_1^0 Z) \propto \left(c_{2\beta} \frac{M_2}{\mu}\right)^2 \left[(M_2 - M_1)^2 - m_Z^2\right].$$

decay occur via mixing through Higgsino
M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
h, G⁰ as mixture of H_u⁰ and H_d⁰

$$h = -\sqrt{2} \quad (s_{\beta} \operatorname{Re}(H_{u}^{0}) + c_{\beta} \operatorname{Re}(H_{d}^{0})),$$

$$G^{0} = \sqrt{2} \quad (s_{\beta} \operatorname{Im}(H_{u}^{0}) - c_{\beta} \operatorname{Im}(H_{d}^{0})).$$

decay occur via mixing through Higgsino
M₂ >> M₁, $\chi_2^0 \rightarrow \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G⁰)
h, G⁰ as mixture of H_u⁰ and H_d⁰

$$h = -\sqrt{2} \quad (s_{\beta} \operatorname{Re}(H_{u}^{0}) + c_{\beta} \operatorname{Re}(H_{d}^{0})),$$

$$G^{0} = \sqrt{2} \quad (s_{\beta} \operatorname{Im}(H_{u}^{0}) - c_{\beta} \operatorname{Im}(H_{d}^{0})).$$

Case CII: Higgsino LSP- Wino NLSP

Case CII: Higgsino LSP- Wino NLSP

Productions

Dominant production:

- Wino pair production: cha-cha, cha-neu
- Higgsino pair production: cha-cha, cha-neu, neu-neu

Productions

Dominant production:

- Wino pair production: cha-cha, cha-neu
- Higgsino pair production: cha-cha, cha-neu, neu-neu

Productions: Bino LSP - Wino NLSP

Productions: Higgsino LSP - Wino NLSP

Productions: Higgsino LSP - Wino NLSP

Productions: Higgsino LSP - Wino NLSP

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

$$XY = W^+W^-, W^{\pm}W^{\pm}, WZ, Wh, Zh, ZZ, and hh$$

- Br(WZ) < 100%, sometime highly suppressed</p>
- Wh complementary to WZ channel: new discovery potential
- Zh could also be important
- hh usually is small

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	NLSPs and Decay Br's $\frac{1}{1} \rightarrow \chi_1^0 W^{\pm} 100\%$ $\frac{1}{2} \rightarrow \chi_1^0 h 84\%(96-70\%)$ $\frac{1}{1} \rightarrow \chi_1^0 W^{\pm} 100\%$ $\frac{1}{2} \rightarrow \chi_1^0 W^{\pm} 100\%$ $\frac{1}{2} \rightarrow \chi_1^0 h 75\%(90-70\%)$ $\frac{1}{3} \rightarrow \chi_1^0 Z 78\%(90-70\%)$		Tota	Total Branching Fractions (%) $V^+W^ W^\pm W^\pm$ WZ Wh Zh Z 1001684100100						
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh	
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84				
	$\chi^0_2 \to \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100							
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75				
	$\chi^0_2 o \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22				
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100							
			$\chi^0_2\chi^0_3$					64	20	16	

	σ_{z}^{t}	$\sigma_{XY}^{\text{oot}} = \sum_{i,j} \sigma(\chi)$	$\chi_i \chi_j) \times B$	$r(\chi_i\chi_j$	$\rightarrow XY$),					
	_	<i>v</i> , <i>j</i>		curre	nt WZ-	⊦ME	T li	mit	we	ak	ened
	NLSPs and	Decay Br's	Production	Tot	al Branch	ing J1	ractio	ns ('	%)		
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh	
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84				
	$\chi^0_2 o \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100							
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75				
	$\chi^0_2 \to \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22				
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100							
			$\chi^0_2\chi^0_3$					64	20	16	

	$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$										
	_	<i>i,j</i>	_		new o	lisco	over	'Y F	ote	nti	ial
	NLSPs and	l Decay Br's	Production	Tot	al Branch	ing F	racio	ons ('	%)		l
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh	l
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84				I
	$\chi^0_2 o \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100							I
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75				l
	$\chi^0_2 o \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22				l
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100							l
			$\chi^0_2\chi^0_3$					64	20	16	I

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	NLSPs and Decay Br's $ \frac{1}{1} \rightarrow \chi_1^0 W^{\pm} 100\% $ $ \frac{1}{2} \rightarrow \chi_1^0 h 84\%(96-70\%) $ $ \frac{1}{1} \rightarrow \chi_1^0 W^{\pm} 100\% $ $ \frac{1}{2} \rightarrow \chi_1^0 W 75\%(90-70\%) $ $ \frac{1}{3} \rightarrow \chi_1^0 Z 78\%(90-70\%) $		Tota	al Branch	ranching Fractions (%) $^{\pm}W^{\pm}$ WZ Wh Zh ZZ 16 84 25 75 78 22							
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh			
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84						
	$\chi^0_2 \to \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100									
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75						
	$\chi^0_2 \to \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22						
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100									
			$\chi^0_2\chi^0_3$					64	20	16			

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	Decay Br's	Production	Tota	al Branch	ranching Fractions (%) $\pm W \pm WZ Wh Zh ZZ h$ 16 84 25 75 78 22							
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh			
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84						
	$\chi^0_2 o \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100									
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75						
	$\chi^0_2 o \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22						
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100									
			$\chi^0_2\chi^0_3$					64	20	16			

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	NLSPs and Decay Br's $ \frac{1}{2} \rightarrow \chi_1^0 W^{\pm} 100\% $ $ \frac{1}{2} \rightarrow \chi_1^0 h 84\%(96-70\%) $ $ \frac{1}{2} \rightarrow \chi_1^0 W^{\pm} 100\% $ $ \frac{1}{2} \rightarrow \chi_1^0 W^{\pm} 100\% $ $ \frac{1}{2} \rightarrow \chi_1^0 h 75\%(90-70\%) $ $ \frac{1}{2} \rightarrow \chi_1^0 Z 78\%(90-70\%) $		Tot	al Branch	Branching Fractions (%) $V^{\pm}W^{\pm}$ WZ Wh Zh Z 168425757822						
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh		
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84					
	$\chi^0_2 \to \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100								
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75					
	$\chi^0_2 o \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22					
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100								
			$\chi^0_2\chi^0_3$					64	20	16		

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	Decay Br's	Production	Tota	al Branch	anching Fractions (%) W^{\pm} WZ Wh Zh ZZ h 168425757822						
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh		
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$	100								
	$\chi^0_2 \to \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100	100							
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$		25 75							
	$\chi^0_2 \to \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22					
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100								
			$\chi^0_2\chi^0_3$	64 2						16		

$$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$$

	NLSPs and	NLSPs and Decay Br's $x \to \chi_1^0 W^{\pm} = 100\%$ $\to \chi_1^0 h = 84\%(96-70\%)$ $x \to \chi_1^0 W^{\pm} = 100\%$ $\to \chi_1^0 W^{\pm} = 100\%$ $\to \chi_1^0 h = 75\%(90-70\%)$ $\to \chi_1^0 Z = 78\%(90-70\%)$		Tot	al Branch	Branching Fractions (%) $Y^{\pm}W^{\pm}$ WZ Wh Zh Z 1684162575						
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh		
Case AI	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			16	84					
	$\chi^0_2 \to \chi^0_1 h$	84%(96-70%)	$\chi_1^+\chi_1^-$	100								
Case AII	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%	$\chi_1^{\pm}\chi_2^0$			25	75					
	$\chi^0_2 \to \chi^0_1 h$	75%(90-70%)	$\chi_1^{\pm}\chi_3^0$			78	22					
	$\chi^0_3 \to \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100								
			$\chi^0_2\chi^0_3$					64	20	16		

	σ_{1}^{t}	$_{XY}^{\mathrm{tot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B \eta$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	l Decay Br's	Production	Tota	al Branchi	ing Fı	actio	ns (4	%)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case BI	$\chi_2^0 \to \chi_1^\pm W^\mp, \qquad$	$\chi_1^0 h, \chi_1^0 Z, 68\%$	b, 27%(xx),	5%(xx),	production	on suj	ppres	sed.		
Case BII	$\chi_2^{\pm} \to \chi_1^0 W^{\pm}$	35%	$\chi_2^{\pm}\chi_2^0$	12	12	33	23	10	9	2
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	35%	$\chi_2^{\pm}\chi_3^0$	12	12	27	29	11	3	7
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	30%	$\chi_2^+\chi_2^-$	12		25	21	21	12	9
	$\chi_2^0 \to \chi_1^\pm W^\mp$	67%	$\chi^0_2\chi^0_3$	23	23	23	21	7	2	2
	$\chi^0_2 \to \chi^0_1 Z$	26%(30-24%)								
	$\chi^0_3 \to \chi^\pm_1 W^\mp$	68%								
	$\chi^0_3 o \chi^0_1 h$	24%(30-23%)								

S. Su

	σ_{j}^{2}	$_{XY}^{\mathrm{tot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B_i$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fr	actio	ns (4	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case BI	ILC, ISR	analyses for	Wino LS	5P pair						
Case BII	$\chi_2^{\pm} \to \chi_1^0 W^{\pm}$	35%	$\chi_2^{\pm}\chi_2^0$	12	12	33	23	10	9	2
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	35%	$\chi_2^{\pm}\chi_3^0$	12	12	27	29	11	3	7
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	30%	$\chi_2^+\chi_2^-$	12		25	21	21	12	9
	$\chi_2^0 \to \chi_1^\pm W^\mp$	67%	$\chi^0_2\chi^0_3$	23	23	23	21	7	2	2
	$\chi^0_2 \to \chi^0_1 Z$	26%(30-24%)								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	68%								
	$\chi^0_3 \to \chi^0_1 h$	24%(30-23%)								

S. Su

	σ_{1}^{2}	$_{XY}^{\mathrm{tot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B_i$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fi	actio	ns (4	%)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case BI	ILC, ISR d	analyses for	Wino LS	5P pair						
Case BII	$\chi_2^{\pm} \to \chi_1^0 W^{\pm}$	35%	$\chi_2^{\pm}\chi_2^0$	12	12	33	23	10	9	2
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	35%	$\chi_2^{\pm}\chi_3^0$	12	12	27	29	11	3	7
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	30%	$\chi_2^+\chi_2^-$	12		25	21	21	12	9
	$\chi_2^0 \to \chi_1^\pm W^\mp$	67%	$\chi^0_2\chi^0_3$	23	23	23	21	7	2	2
	$\chi^0_2 \to \chi^0_1 Z$	26%(30-24%)					\sim			
	$\chi_3^0 \to \chi_1^\pm W^\mp$	68%								
	$\chi^0_3 \to \chi^0_1 h$	24%(30-23%)								

	σ_{1}^{2}	$_{XY}^{\mathrm{tot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B_i$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	l Decay Br's	Production	Tota	al Branchi	ing Fi	ractio	ns (G	%)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case BI	ILC, ISR	analyses for	Wino LS	5P pair						
Case BII	$\chi_2^{\pm} \to \chi_1^0 W^{\pm}$	35%	$\chi_2^{\pm}\chi_2^0$	12	12	33	23	10	9	2
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	35%	$\chi_2^{\pm}\chi_3^0$	12	12	27	29	11	3	7
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	30%	$\chi_2^+\chi_2^-$	12		25	21	21	12	9
	$\chi_2^0 \to \chi_1^\pm W^\mp$	67%	$\chi^0_2\chi^0_3$	23	23	23	21	7	2	2
	$\chi^0_2 \to \chi^0_1 Z$	26%(30-24%)								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	68%								
	$\chi^0_3 o \chi^0_1 h$	24%(30-23%)								

	$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$									
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fı	actio	ns (4	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case BI	ILC, ISR d	analyses for	Wino LS	5P pair						
Case BII	$\chi_2^{\pm} \to \chi_1^0 W^{\pm}$	35%	$\chi_2^{\pm}\chi_2^0$	12	12	33	23	10	9	2
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	35%	$\chi_2^{\pm}\chi_3^0$	12	12	27	29	11	3	7
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	30%	$\chi_2^+\chi_2^-$	12		25	21	21	12	9
	$\chi_2^0 \to \chi_1^\pm W^\mp$	67%	$\chi^0_2\chi^0_3$	23	23	23	21	7	2	2
	$\chi^0_2 \to \chi^0_1 Z$	26%(30-24%)								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	68%								
	$\chi^0_3 o \chi^0_1 h$	24%(30-23%)								

S. Su

	$\sigma_{XY}^{\text{tot}} = \sum_{i,j} \sigma(\chi_i \chi_j) \times Br(\chi_i \chi_j \to XY),$									
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fı	actio	ns ('	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case CI	$\chi_3^0 \to \chi_1^\pm W^\mp,$	$\chi^0_{1,2}Z, \chi^0_{1,2}h, 5$	2%,26%,2	2%, pro	duction s	uppre	ssed.			
Case CII	$\chi_2^{\pm} \to \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_2^{\pm}\chi_3^0$	14	14	26	24	11	6	5
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		27	23	12	7	5
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	23 %								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	54 %								
	$\chi^0_3 \to \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \to \chi^0_{1,2} h$	22 %								

	$\sigma_2^{ t t}$	$_{XY}^{\mathrm{ot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B \eta$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fi	ractio	ns (4	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case CI	ILC , X _{1,2} ⁰ X	3 ⁰ pair or I	SR analy	ses for	• Higgs	ino	LSP	pa	ir	
Case CII	$\chi_2^{\pm} \to \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_2^{\pm}\chi_3^0$	14	14	26	24	11	6	5
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		27	23	12	7	5
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	23 %								
	$\chi^0_3 \to \chi^\pm_1 W^\mp$	54 %								
	$\chi^0_3 \to \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \to \chi^0_{1,2} h$	22 %								

	$\sigma_2^{ t t}$	$_{XY}^{\text{ot}} = \sum_{i,j} \sigma(\chi$	$(\chi_i \chi_j) \times B \eta$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fi	ractio	ns (4	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case CI	ILC , X _{1,2} ⁰ X	3 ⁰ pair or I	SR analy	ses for	• Higgs	ino	LSP	pa	ir	
Case CII	$\chi_2^{\pm} \to \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_2^{\pm}\chi_3^0$	14	14	26	24	11	6	5
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		27	23	12	7	5
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	23 %								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	54 %								
	$\chi^0_3 \to \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \to \chi^0_{1,2} h$	22 %								

	$\sigma_2^{ t t}$	$_{XY}^{\text{ot}} = \sum_{i,j} \sigma(\chi$	$(\chi_i \chi_j) \times B \eta$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branchi	ing Fi	ractio	ns (4	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case CI	ILC , X _{1,2} ⁰ X	3 ⁰ pair or I	SR analy	ses for	• Higgs	ino	LSP	pa	ir	
Case CII	$\chi_2^{\pm} \to \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_2^{\pm}\chi_3^0$	14	14	26	24	11	6	5
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		27	23	12	7	5
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	23 %								
	$\chi_3^0 \to \chi_1^\pm W^\mp$	54 %								
	$\chi^0_3 \to \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \to \chi^0_{1,2} h$	22 %								

	σ_2^t	$\sigma_{XY}^{\mathrm{ot}} = \sum_{i,j} \sigma(\chi)$	$(\chi_i \chi_j) \times B \eta$	$r(\chi_i\chi_j$ -	$\rightarrow XY)$,				
	NLSPs and	Decay Br's	Production	Tota	al Branch	ing Fi	ractio	ns (¢	76)	
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case CI	ILC , X _{1,2} ⁰ X	3 ⁰ pair or I	SR analy	ses for	· Higgs	ino	LSP	pa	ir	
Case CII	$\chi_2^{\pm} \to \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_2^{\pm}\chi_3^0$	14	14	26	24	11	6	5
	$\chi_2^{\pm} \to \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		27	23	12	7	5
	$\chi_2^{\pm} \to \chi_1^{\pm} h$	23 %								
	$\chi^0_3 \to \chi^\pm_1 W^\mp$	54 %								
	$\chi^0_3 \to \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \to \chi^0_{1,2} h$	22 %								

LHC/ILC searches

Channel	Signal (LHC)	Signal (ILC)
W+M-	OS2L + MET	hadronic (4j),
W [±] W [±]	SS2L + MET	semileptonic,
WZ	3L + MET	states +MT
Wh	1L + bb + MET	
Zh	OS2I +bb + MET	
LSP pair		ISR photon + soft

LHC/ILC searches

Channel	Signal (LHC)	Signal (ILC)
W+M-	OS2L + MET	hadronic (4j),
W [±] W [±]	SS2L + MET	semileptonic,
WZ	3L + MET	states +MT
Wh	1L + bb + MET	
Zh	OS2I +bb + MET	
LSP pair		ISR photon + soft

Wh and Zh channels comparable/complementary to WW, WZ channels!

LHC/ILC searches

Channel	Signal (LHC)	Signal (ILC)
W+M-	OS2L + MET	hadronic (4j),
W [±] W [±]	SS2L + MET	semileptonic,
WZ	3L + MET	states +MT
Wh	1L + bb + MET	
Zh	OS2I +bb + MET	
LSP pair		ISR photon + soft

Wh and Zh channels comparable/complementary to WW, WZ channels!

Tomohiko Tanabe: Joint LHC-ILC Studies-Electroweakino Scan