

Joint LHC-ILC Studies: Electroweakino Scan

Mikael Berggren, Tao Han, Jenny List, Sanjay Padhi, Shufang Su, <u>Tomohiko Tanabe</u>

Snowmass Energy Frontier Workshop University of Washington, Seattle June 30, 2013

Contents

- Introduction
- LHC & LEP limits
- Simulation Tools
- Analysis strategy: LHC and ILC
- Results
- Summary and outlook

Introduction

Motivation and theoretical background:

See previous talk by Shufang Su!

Goal: To explore the LHC/ILC reach in the MSSM electroweak sector with a comprehensive scan in M₁, M₂ and mu. Study prospects of discovery/exclusion reach of both LHC/ILC for electroweakino direct production.

Assumptions in the scan:

- Decouple the squark and slepton sectors
- Impose Higgs mass constraint
- Enforce LEP limits
- Avoid small mass splittings (n.b. loop-corrections)
- Explore properties related to on-shell and off-shell decays via W/Z/h bosons

Electroweakino Direct Production

For LHC:

$$p\overline{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 X, \ \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} X, \dots$$

For ILC:

$$e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-, \, \tilde{\chi}_2^+ \tilde{\chi}_2^-, \, \tilde{\chi}_1^0 \tilde{\chi}_2^0, \dots$$

Decays:

$$\begin{array}{ccc} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 & \to (Z/h) \tilde{\chi}_1^0 \\ & \cdots \end{array}$$
 Higgs!

LHC limits

Simplified model:

 $\widetilde{\chi}_1^0$ is bino, $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ are wino and degenerate

100% BR into W/Z assumed

ATLAS-CONF-2013-035

LEP limits

Simulation Tools

For LHC:

Delphes fast simulation – See plenary talk by Sanjay Padhi!

For ILC:

Simulation à Grande Vitesse (SGV): Covariant matrix machine

- Event generation & simulation on-the-fly
- Particle flow calorimetry treatment

M. Berggren, ECFA LC2013 SGV: How tracking works SGV and FullSim: P_T and D₀ resolution SGV is a machine to calculate covariance matrices Follow track-helix through Calculate cov. mat. at perigee, the detector-layers including material, measurement σ_{1/ρ₁} [GeV/c]⁻¹ ₅₀ σ_{1/ρ₁} $\sigma_{ip} \, [cm]$ errors and extrapolation. SGV FullSim • Smear perigee parameters (Choleski decomposition: takes all correlations into account) • Helix parameters exactly calculated, errors with one approximation: helix moved to (0,0,0) for this. Other stuff: Plug-ins for particle identification, (Fringe benefit of stepping: track-finding efficiencies,... p_{_} [GeV/c] EM-interactions in detector Information on hits accessible to layers simulated) analysis. Lines: SGV, dots: Mokka+Marlin Mikael Berggren (DESY-HH ECFA LC, May 2013 4 / 12

Θ [radians]

Energy and Luminosity

LHC:

- $\sqrt{s} = 14 \text{ TeV}$
- Integrated Luminosity = (t.b.d)

ILC:

- $\sqrt{s} = 500 \text{ GeV}$
- Integrated Luminosity = 500 fb⁻¹
- Beam polarization P(e+,e-) = (+0.3,-0.8)

Scan parameters

Common parameter ranges are used in the scan.

	M1	M2	mu
Bino LSP	100 GeV	140-980 GeV	150-1000 GeV
	(LSP)	in 40 GeV steps	in 50 GeV steps
Wino LSP	150-1000 GeV	100 GeV	140-980 GeV
	in 50 GeV steps	(LSP)	in 40 GeV steps
Higgsino LSP	150-1000 GeV	140-980 GeV	100 GeV
	in 50 GeV steps	in 40 GeV steps	(LSP)

Search strategy

Assume prompt electroweakino decays.

For LHC:

- Trigger on visible decay products
- Explore final states: WW, WZ, Wh, ZZ, Zh, hh
 - e.g. Wh channel: 1 lepton + jets + MET

For ILC:

- For mass differences >= 30 GeV:
 - 4 jets + missing 4-momentum
- For small mass differences:
 - ISR photon + few soft particles

LHC: Wh channel (1)

Reconstruct **Wh** with $W \rightarrow Iv$ and $h \rightarrow bb$

Wh channel: 11+jets + MET

- Isolated e(μ), Pt > 30(20) GeV, |eta| < 2.5
- Veto any additional e/µ with Pt > 10 GeV, |eta| < 2.5
- Veto any Taus or isolated Tracks
- 2 Jets Pt > 30 GeV, |eta| < 2.5
- Veto 3rd Jet with Pt > 20 GeV
- 2 bjets with Pt > 30 GeV, |eta| < 2.5
- 2 bjets in one hemi-sphere
- Invariant mass of two bjets 100 < Mbb (GeV) < 140
- MT (MET and the Higgs) > 200 GeV
- MET > 50 GeV

Signal regions:

(MT, MET) > (200, 50), (600, 50), (200, 100), (600,100) GeV

LHC: Wh channel (2)

Sensitivity to large electroweakino masses

Expected lower limit ~250 GeV for LHC14, 10 fb⁻¹
Result of other channels will be combined (work in progress...)

ILC: 4 jets + missing 4-momentum

General strategy:

Reconstruct the hadronic decay of the chargino: **4 jets + missing 4-momentum** signature.

Choose jet combination most consistent with the same dijet mass.

Event selection based on:

- Number of particles
- Large missing energy
- Missing momentum not along the beam pipe
- Require minimum jet energy
- Jet finder transition values

Inclusive SUSY signal is well reconstructed for mass differences > 25 GeV.

ILC: ISR photon + soft particles

The **ISR tag** is critical in reducing γγ backgrounds by kicking the **hard forward electrons** into detector acceptance.

For the soft particles:

Choose "semileptonic" signature: lepton on one side + pions on the other side.

(Analysis in progress...)

Chen, Drees, Gunion [arXiv:hep-ph/9902309]

ILC: Mass resolutions

4 jets + missing 4-mom.

List, Suehara [arXiv:0906.5508]

ISR + soft particles

Berggren, Brümmer, List, Moortgat-Pick, Robens, Rolbiecki, Sert [To appear]

→ Typical mass resolutions O(1)%

Results (1)

ILC: Need NLSP in kinematic range, limits up to half the CM energy.

LHC: reach will be extended by

Results (2)

LSP and NLSP are nearly degenerate for large mu.

LSP and NLSP are nearly degenerate for large M₁ & M₂

ISR analysis should be sensitive for both cases.

Summary and outlook

- Naturalness arguments call for the investigation of a light electroweak sector in the MSSM.
- Parameter scans are being performed for all cases: Bino LSP, Wino LSP, Higgsino LSP.
- The complementary of the LHC/ILC is expected to be demonstrated.
- Whitepaper to be submitted to the Snowmass process!!

Extra Slides

Possible LHC searches with Higgs in the final state

Wh: 1l+jets + MET

95% C.L. upper limit on signal cross section

With background only hypothesis, one can be sensitive to ~ 200 GeV in mass

tanbeta dependency

- decay occur via mixing through Higgsino
- \bullet M₂ >> M₁, $\chi_2^0 \to \chi_1^0 Z$ dominated by the decay via Z_L (goldstone mode G^0)
- h, G⁰ as mixture of H_u⁰ and H_d⁰

Light Electroweakinos

$$m_Z^2 = -2(m_{H_u}^2 + |\mu|^2) + \mathcal{O}(\cot^2 \beta)$$

Higgsino mass μ should be around O(100) GeV to avoid fine-tuning.

Possibly with small mass splitting.

→ Motivates search for light electroweakinos. Will consider in particular models where all other SUSY particles are heavy.