
Physics case for a LC based on LHC results and expectations

G. Moortgat-Pick (Uni Hamburg/DESY)

What is the motivation?

- We have a Higgs! That's great.
- But does it really behave as Higgs/Brout/Englert want?
 Or are here hints for BSM? We do need to know all its properties with best precision.
- Why is the Higgs so spectacular? Because that's the bridge between 'micro' and 'macro' cosmos.
- We have the LHC and the HL-LHC. That's great!
- Do we really also need the LC?
 - ...a great chance might just be ahead....

Very encouraging politics!

Possible Timeline

- July 2013
 - Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one
- End 2013
 - Japanese government announces its intent to bid
- 2013~2015
 - Inter-governmental negotiations
 - Completion of R&Ds, preparation for the ILC lab.

2023

2030?

- ~2015
 - Inputs from LHC@14TeV, decision
- 2015~16
 - Construction begins (incl. biddin
- 2026~27
 - Commissioning

2015 □s=13~14 TeV, L~1x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2016 2017 Injector and LHC Phase-1 upgrade to full design luminosity 2018 LS2 2019 \Box s=14 TeV, L~2x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2020 2021 HL-LHC Phase-2 upgrade, IR, crab cavities? 2022 LS3

□s=14 TeV, L=5x10³⁴ cm⁻² s⁻¹, luminosity levelling

But is it justified by physics?

-350 fb-1

~3000 fb

LHC timeline

~75-100 fb

Preface

- Discovery of a SM-like Higgs around m_H~125 GeV
 - Is an absolute revolution!
 - Completely new type
 - Not clear whether a SM-Higgs

The properties of the Higgs boson, to be discovered at the LHC, must be thoroughly investigated in a good condition at the ILC'
(K. Kawagoe, Feb 12)

- Limits in SUSY coloured sector (approx.):
 - m_q,m_q>1 TeV but 3rd generation: much weaker
 - EW part: Bounds in Drell-Yan (mainly only in simplified models)
- Limits on Z', W': ~2-2.5 TeV
- And more limits on ED, exotics, 4th generation etc.
- Very active: many new LC studies and reports....
 - ILC TDR (since June 12, 2013) and CLIC CDR 2012
 - Collection of LC notes (DESY123h) online ←
 - 2 more LC reviews under work

Focus of my talk (in p. 1st article in Desy123h, 1210.0202)

The LC physics offer

Staged approach:

- √s=250 GeV, `Higgs cross section, mass + couplings'
- √s=350 GeV, `Higgs width + top mass'
- $-\sqrt{s}$ =500 GeV, `Special Higgs- and top couplings+BSM'
- (\sqrt{s} =91 GeV, `Precision frontier + indirect BSM frontier')
- √s≥1000 GeV, `Closing the Higgs picture+more BSM? '
- New' features, impact on 'quality' (and quantity):
 - Flexible precise energy
 - Perform threshold scans
 - Polarized e- and e+ beams

EW@LC: start with Higgs summary

- Staged energy approach: choose 250GeV, 350GeV, etc.
 - 250 GeV: absolute measurement of Higgs cross section $\sigma(HZ)$ and g_{HZZ} : crucial input for all further Higgs measurements !

\sqrt{s}	250 GeV	
Int. \mathcal{L}	250 fb-1	
$\Delta(\sigma)/\sigma$	2.5%	← Model independent!
$\Delta(g_{\rm HZZ})/g_{\rm HZZ}$	1.3%	inouci macpenaenti

Reconstructed recoil mass distri. (eeX, μμX): ΔmH=32 MeV Model independent determination of couplings to c, b,g,τ

$\Delta(\sigma^*BR)/(\sigma^*BR)$	250 GeV/250 fb ⁻¹ P = (-0.8,+0,3)	350 GeV/250 fb ⁻¹ P = (-0.8,+0,3)	
H→bb	1.0%	1.0%	>factor 10 better than HL-LHC
H→cc	6.9%	6.2%	LC unique
H→gg	8.5%	7.3%	LC unique
Н->тт	4.2%		

• Estimate: about 3 years running time needed on \sqrt{s} =250 GeV

Summary on Higgs results, cont

- $\sqrt{s=350}$ GeV: Further improvement in Higgs couplings (TDR)
 - Access to Higgs total width (~4 MeV for 125 Higgs): $\Delta T_h^{tot}/T_h^{tot}$ ~7%
 - Access to CP-parity in mixed states: construct CP-odd observables
 via angular distribution in τ-decays: s-ps mixing-angle up to 60
- $\sqrt{s=500 \text{ GeV}}$: Further improvement in width $\Delta T_h^{\text{tot}} / T_h^{\text{tot}} \sim 5\%$
 - First access to Top-Yukawa coupling: Δg_{ttH}/g_{ttH}~10%
 - First access to trilinear couplings: Δλ/λ ~ 44%
 - Many studies based on 2ab⁻¹
- $\sqrt{s=1000 \text{ GeV}}$: $\Delta T_h^{\text{tot}} / T_h^{\text{tot}} \sim 4\%$, $\Delta g_{ttH} / g_{ttH} \sim 4.6\%$, $\Delta \lambda / \lambda \sim 18\%$
 - LHC estimates: about Δg_{ttH} ~10% and $\Delta \lambda/\lambda$ ~32% at HL-LHC (14 TeV, 3000fb⁻¹), however under strong assumptions!
- Full LC up to 1 TeV: beats HL-LHC by more than factor~2 and allows model-independent approaches!

'New tools' for new physics: polarization

Access to chirality

In practically all new physics models

- Chirality of particles/interactions has to be identified
- Since for E>>m: chirality = helicity = polarization
- Access to specific asymmetries (v, heavy leptons, ..., see LC notes)

$$A_{\text{double}} = \frac{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) - \sigma(P_1, P_2) - \sigma(-P_1, -P_2)}{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) + \sigma(P_1, P_2) + \sigma(-P_1, -P_2)},$$

- Exploitation of transversely-polarized beams (~ P_e P_{e+})
 - Access to tensor-like interactions (Extra dimensions, etc.)
 - Access to CP-violating phenomena
 - Access to specific triple gauge couplings

What's about BSM/SUSY?

- SUSY: still strongly motivated and beautiful, but
 - so far, no hints of a signal at LHC, only rather high exclusion limits in the coloured sector
 - But Higgs mass of mH=125GeV measured:
 - Strong impact on SUSY models!
 - But only Constrained models (CMSSM,...) + Simpl. Models under tension!
- Further hints from theory? From (g-2)μ and 'naturalness':

$$\delta a_{\mu}(ext{N.P.}) = \mathcal{O}(extsf{C}) \left(rac{ extsf{m}_{\mu}}{ extsf{M}}
ight)^2, \quad extsf{C} = rac{\delta extsf{m}_{\mu}(ext{N.P.})}{ extsf{m}_{\mu}}$$

$$\frac{M_Z^2}{2} \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

- Rather small value for μ-parameter ~200 GeV required!
- Conclusions: some SUSY particles very light and probably not the simplest model Open playground for the LC!

LC: Parameters from $e^+e^- \rightarrow \chi^+ {}_1\chi^- {}_1@NLO$

- **Strategy:** Use NLO corrected masses and σ_{LR} at \sqrt{s} =350,500
 - Use in addition A_{FR}
 - Fit of M_1 , M_2 , μ , tan β and stop sector mt_1 , mt_2 and $cos\theta_1$
 - Compare mass accuracy from
 - Threshold scans
 - **Continuum measurement**

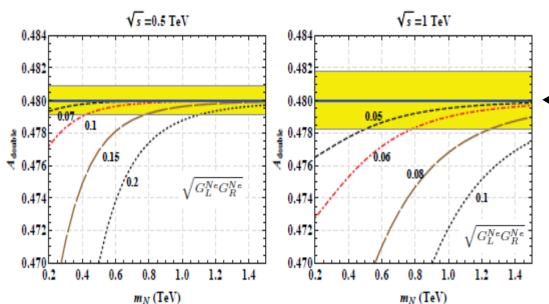
Parameter	Threshold fit		Continuum fit	
M_1	125±0.3	(± 0.7)	125 ± 0.6	(±1.2)
M_2	250 ± 0.6	(± 1.3)	250 ± 1.6	(± 3)
μ	180 ± 0.4	(± 0.8)	180 ± 0.7	(± 1.3)
$\tan \beta$	10 ± 0.5	(± 1)	10 ± 1.3	(± 2.6)
$m_{ ilde{ u}}$	$1500{\pm}24$	$\binom{+60}{-40}$	1500 ± 20	(± 40)
$m_{ ilde{t}_1}$	400^{+180}_{-120}	(at limit)	_	
$m_{ ilde{t}_2}$	800^{+300}_{-170}	$\binom{+1000}{-290}$	800^{+350}_{-220}	(at limit)

- Relevance of threshold scans and sensitivity to heavy masses
- Impact also on dark matter prediction:
 - Precision needed for accurate DM prediction: accuracy of the NLO corrected parameters \rightarrow 5% uncertainty in DM prediction

Gauge boson couplings

- WW/ZZ scattering, and WW final state:
 - Close relation between WWγ and WWZ
 - Footprints of new physics via trilinear gauge couplings
 - New simulations at 500 and 800: probe < per mille
 - Up to an oder of magnitude better than 14TeV LHC
- Strong dynamics for EWSB:
 - Even for light Higgs possible
 - Composite Higgws models: L~ v^2/Λ^2_{comp}
- Precision measurements in VV-> VV, VV-> HH and e+e→ HZ
 - Sensitiv to composite scale:

```
14 TeV LHC, 100 fb<sup>-1</sup> LHC: 7 TeV
```


500 GeV LC ,1 ab⁻¹: 45 TeV

3 TeV LC, 1 ab-1: 60 TeV

High sensitivity to multi-TeV scale already at a 500 GeV LC!

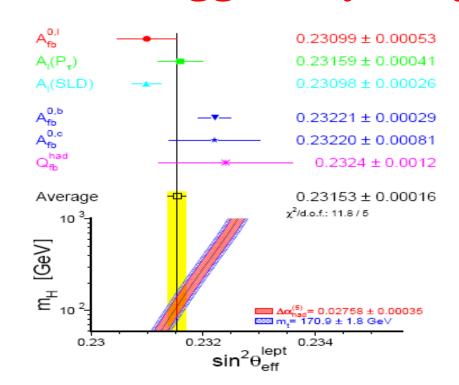
Other exotics: heavy Leptons

- Study: e+e- -> W+W-
 - Very sensitive to leptonic verrtices and trilinear gauge couplings
 - New heavy neutral boson or heavy leptons can contribute
 - E.g., E6 inspired model are consistent with Z's but also new heavy leptons (SU(2))
- Model identification = exclusion of competitive models (incl. SM)
 - Double polarization asymmetries very useful:

$$A_{\rm double} = P_1 P_2 \frac{(\sigma^{RL} + \sigma^{LR}) - (\sigma^{RR} + \sigma^{LL})}{(\sigma^{RL} + \sigma^{LR}) + (\sigma^{RR} + \sigma^{LL})}.$$

$$\leftarrow$$
 $A_{\text{double}}^{\text{SM}} = A_{\text{double}}^{\text{Z'}} = A_{\text{double}}^{\text{AGC}}$

Sensitive to effects from such models and model distinction already at 500 GeV!


What if nothing else than H is found now?

The exciting Higgs story has just started....

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top}, m_W and sin²θ_{eff}
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z , m_W , α_{had} , $\sin^2\theta_{eff}$ und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV
 - Pe-=80% and Pe+=60% required !(If only Pe-=90% : precision ~factor 4 less!)

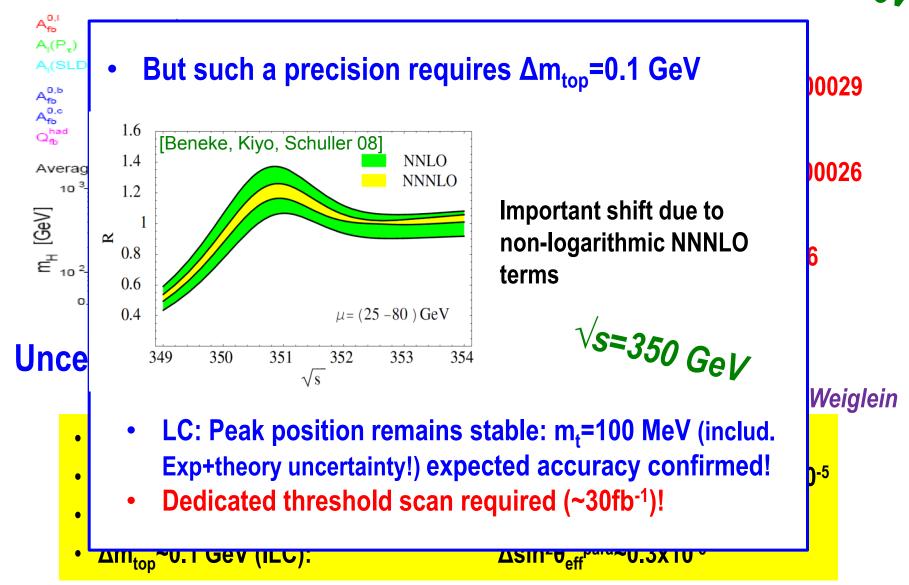
Higgs story has just started ...

LEP:

 $\sin^2\theta_{\text{eff}}(A_{FB}^{\ b}) = 0.23221 \pm 0.00029$

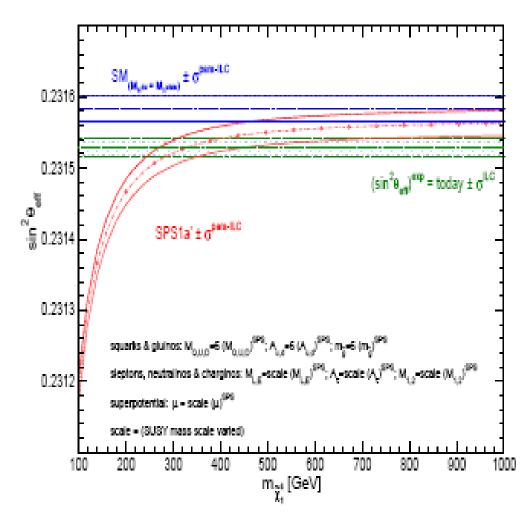
SLC:

 $\sin^2\theta_{\text{eff}}(A_{LR}) = 0.23098 \pm 0.00026$


World average:

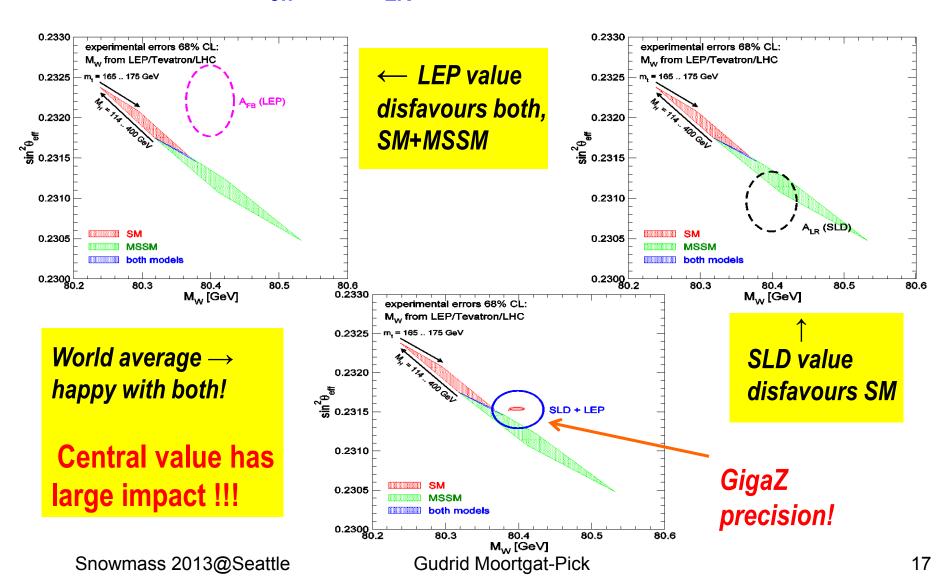
 $\sin^2\theta_{\text{eff}} = 0.23153 \pm 0.00016$

Goal GigaZ: $\Delta \sin\theta = 1.3 \ 10^{-5}$

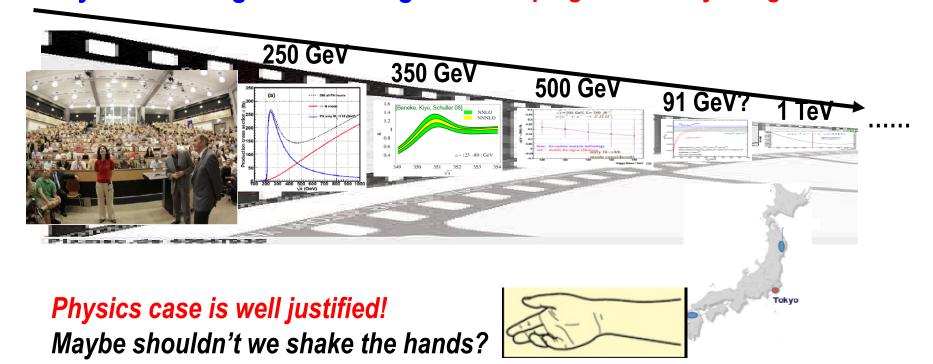

Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top,...}

Higgs story has just started ... $\sqrt{s=g_1}_{GeV}$

What else could we learn? $\sqrt{s=91}_{GeV}$


- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity to reveal effects of NP!

To close the story... GigaZ


√s=91 GeV

• Measure $\sin^2\theta_{eff}$ via A_{LR} with high precision: $\Delta \sin\theta = 1.3 \cdot 10^{-5}$

EW Physics at the LC

- The LC offers new tools and a staged approach:
 - complements and extends the HL-LHC capabilities
 - access to quantum effects, CP-effects in Higgs, top, BSM, ...
 - high precision measurements mandatory to resolve the structure
- Maybe need to go back to GigaZ! ...keeping our 'savety margin'

