

Philipp Roloff (CERN) on behalf of the CLIC detector and physics study

Snowmass Energy Frontier workshop, University of Washington, Seattle, 30/06/2013

CLIC in one slide

CLIC is the most mature option for a multi-TeV future e⁺e⁻ collider

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Staged construction: ≈350 GeV up to 3 TeV
- High luminosity (a few 10³⁴ cm⁻²s⁻¹)

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

The CLIC detector and physics study

• Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): http://lcd.web.cern.ch/lcd/Home/MoC.html

- CERN acts as host laboratory
- At the moment 17 institutes from 14 countries, more contributors most welcome!

Experimental conditions

e⁺e⁻ pairs:

Detector design issue (mostly very forward, high occupancies)

$\gamma\gamma \rightarrow hadrons:$

 Main background in calorimeters and trackers

\rightarrow impact on physics

 Overlay of physics events with pileup from γγ → hadr. interactions in benchmark studies Beam-related backgrounds

- e⁺e⁻ pairs
- $\gamma\gamma \rightarrow$ hadrons

Backgrounds suppressed using combined cuts on cluster times and p_T

Based on ILC concepts (ILD and SiD), adapted to CLIC conditions

Benchmark studies are based on full detector simulations (Geant4)

CLIC energy stages

- CLIC will be implemented in stages: optimised running conditions over a wide energy range
- The energy stages are defined by physics with additional technical considerations
- \rightarrow strategy can be adapted to discoveries at the LHC

CLIC benchmark studies

Benchmark studies so far focus on SM Higgs measurements and BSM searches

Top quark mass:

\sqrt{s} (GeV)	Technique	Measured Integrated quantity luminosity (fb ⁻¹)	Unit	Generator value	Stat. error
350	Threshold scan	$\begin{array}{c} \text{Mass} \\ \alpha_{\text{S}} \end{array} 10 \times 10$	GeV	174 0.118	0.033 0.0009
500	Invariant mass	Mass 100	GeV	174	0.080

→ see talk by Sophie Redford in top quark session

SM Higgs mass: <u>350 GeV:</u> $\Delta(m_{H}) = 120$ MeV, model independent from Z recoil <u>1.4 TeV:</u> $\Delta(m_{H}) \approx 40$ MeV (estimated) from $H \rightarrow b\overline{b}$ <u>3 TeV:</u> $\Delta(m_{H}) \approx 33$ MeV (estimated) from $H \rightarrow b\overline{b}$ <u>Higgs session</u>

M_w from single W events

- Large samples of single W events produced at high-energy CLIC
- Potential for competitive measurement of $M^{}_{_W}\,using\,W^{\scriptscriptstyle\pm}\to q\overline{q}$
- Need full simulation study to understand the impact of systematic effects, i.e. the jet energy scale

	1.4 TeV	3 TeV
L _{int}	1500 fb⁻¹	2000 fb ⁻¹
# eWv events	22.3 · 10 ⁶	44.9 · 10 ⁶

Numbers of events including ISR and Beamstrahlung assuming unpolarised beams

Triple gauge couplings have beed studied in the past using $e^+e^- \rightarrow W^+W^-$ events (hep-ph/0412251):

Table 10: Sensitivity of the real parts of CP-even couplings in units of 10^{-3} , defined and expounded upon in [30]. The integrated luminosities for the 500 GeV, 800 GeV and 3000 GeV stages are assumed here to be 500 fb⁻¹, 1 ab⁻¹ and 3 ab⁻¹ respectively.

\sqrt{s} [GeV]	$\operatorname{Re}(\Delta g_1^L)$	$\operatorname{Re}(\Delta \kappa_L)$	$\operatorname{Re}(\lambda_L)$	$\operatorname{Re}(g_5^L)$	$\operatorname{Re}(g_1^R)$	$\operatorname{Re}(\Delta \kappa_R)$	$\operatorname{Re}(\lambda_R)$	$\operatorname{Re}(g_5^R)$
500	2.6	0.85	0.59	2.0	10	2.4	3.6	6.7
800	1.6	0.35	0.24	1.4	6.2	0.92	1.8	4.8
3000	0.93	0.051	0.036	0.88	3.1	0.12	0.36	3.2

 \rightarrow Improved precision at high-energy

New analysis based on current full detector simulation desirable

Outlook

Planned future studies based on full detector simulation:

- Triple and quartic gauge boson vertex corrections to $e^+e^- \rightarrow W^+W^-(vv/e^+e^-)$
- Forward-backward and left-right asymmetries of fermion production to achieve precision measurements of $\sin^2 \theta_f^{eff}$ at various energies
- W boson mass determination at high energy and high luminosity
- Total $e^+e^- \rightarrow f\bar{f}$ cross sections at high energy with various electron-positron polarisations in search of form-factor suppressions or enhancements

Backup slides

30/06/2013 Philipp Roloff Snowmass Energy Frontier workshop

Selected CLIC parameters

Beam related backgrounds

Coherent e^+e^- pairs: 7 · 10⁸ per BX, very forward Incoherent e^+e^- pairs: 3 · 10⁵ per BX, rather forward \rightarrow Detector design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- "Only" 3.2 per BX at 3 TeV
- Main background in calorimeters and trackers
- \rightarrow Impact on physics

Significant energy loss at the interaction point due to **Beamstrahlung**

1.) Identify t_0 of physics event in offline event filter

- Define reconstruction window around t_n
- All hits and tracks in this window are passed to the reconstruction \rightarrow Physics objects with precise p_T and cluster time information

2.) Apply cluster-based timing cuts

- Cuts depend on particle-type, p_{τ} and detector region
- \rightarrow Protects physics objects at high p₁

tCluster

Used in the reconstruction software for CDR simulations:

Subdetector	Reconstruction window	hit resolution		
ECAL	10 ns	1 ns		
HCAL Endcaps	10 ns	1 ns		
HCAL Barrel	100 ns	🗾 1 ns		
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns		
TPC	entire bunch train	n/a		
	 CLIC hardware requirements Achievable in the calorimeters with sampling every ≈ 25 ns 			

Impact of the timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (8 jet final state)

1.2 TeV background in the reconstruction window

100 GeV background after (tight) timing cuts

Jet reconstruction at CLIC I

Jet reconstruction at CLIC II

 $e^+e^- \to \tilde{q}_R \tilde{q}_R \to q \overline{q} \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$

Two jets + missing energy

- Using Durham k_{T} à la LEP \rightarrow Timing cuts are effective, but not sufficient
- "hadron collider" k_{T} , R = 0.7
- \rightarrow Background significantly reduced further

 \rightarrow Need timing cut + jet finding for background reduction

Figure 19: Separation of *W* and *Z* from the chargino decay without overlay (left) and with 60 BX of background (right) for CLIC_SiD.

Test of the di-jet mass reconstruction

Reconstruct $W^{\pm}/Z/h$ in hadronic decays \rightarrow four jets and missing energy

Chargino and neutralino pair production:

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Test of the lepton reconstruction

- Slepton production very clean at CLIC
- SUSY "model II": slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \end{split}$$

$m(\tilde{\mu}_{\rm R})$	•	$\pm 5.6 \text{GeV}$
$m(\tilde{e}_{R})$	•	$\pm 2.8 \text{GeV}$
$m(\tilde{v}_{e})$	•	$\pm 3.9 \text{GeV}$
$m(\tilde{\chi}_1^0)$	•	$\pm 3.0 \text{GeV}$
$m(\tilde{\chi}_1^{\pm})$	•	$\pm 3.7 \text{GeV}$

Flavour tagging crucial!

Heavy Higgs bosons: $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$

Accuracy of the heavy Higgs mass measurements: $\approx 0.3\%$