Accelerator Capabilities for the Energy Frontier

Mark Palmer Frontier Capabilities:

Energy Frontier Lepton & Gamma Colliders Sub-Group

July 1, 2013

SNOWMASS ENERGY FRONTIER WORKSHOP

June 30 - July 3, University of Washington, Seattle

Outline

- Introduction
- Hadron Colliders
- Lepton and γ-γ Colliders
- Closing Comments

The Working Groups and Inputs

The Working Group Assessments

The "Boundary Conditions"

INTRODUCTION

Frontier Capabilities Sub-Groups & Inputs

- Accelerator Capabilities Convener: Bill Barletta (MIT)
- This talk draws principally on materials submitted to 3 of the Capabilities Frontier sub-groups:
 - Hadron Colliders
 - Sub-conveners: Marco Battaglia (UCSC), Markus Klute (MIT), Soren Prestemon (LBNL), & Lucio Rossi (CERN)
 - EF Liaison: Eric Prebys (FNAL)
 - Sub-Group Meeting at CERN (Feb): http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=223094
 - Lepton Colliders
 - Sub-conveners: Marco Battaglia (UCSC), Markus Klute (MIT), Kaoru Yokoya (KEK), & myself
 - EF Liaison: Tor Raubenheimer (SLAC)
 - Sub-Group Meeting at MIT: https://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=233944
 - R&D Capabilities
 - Sub-conveners: Georg Hoffstaeter (Cornell), Mark Hogan (SLAC),
 & Vladimir Shiltsev (FNAL)
 - Sub-Group Meeting at Univ. of Chicago: https://indico.fnal.gov/conferenceDisplay.py?ovw=True&confld=6326
- Submissions covered a broad range of capabilities and possibilities
 ⇒ many contributors to what follows
 - Particular thanks to E. Prebys, T. Raubenheimer, S. Henderson

Working Group Assessments

- The goal of the aforementioned working groups has been to:
 - Summarize the capabilities that can support the physics needs of Energy Frontier
 - Evaluate the major technical challenges and cost drivers
 - Identify the R&D path required to develop the necessary capabilities
- It should be noted that:
 - All of the options have some technical challenges
 - None of the options under consideration is cheap
 - But, we do have real options with contrasting strengths and weaknesses (as well as varying states of readiness)
 ⇒ which makes the process of charting an optimal route forward challenging when we are discussing timescales of decades

What do you get for a Billion Dollars?

NSLS-II: \$0.9B, 0.8 km storage ring

SNS: \$1.4B, 1 GeV Linac, Ring, high-power target, 1km

S. Henderson HF2012

Jim Siegrist's "Boundary Conditions"

- Note that a 'brute force' approach that seeks to spend vast sums in order to build some facility/physics capability simply will not work in today's fiscal environment. This has been empirically demonstrated.
 - Most recently, via our discussions on LBNE, we have confirmed that single domestic project expenditures must be somewhat smaller than \$1B per stage.
- CSS2013 participants are encouraged to think about whatever physics you
 think is most relevant and important to progress in HEP, but the effort you put
 in should be tempered with a realistic assessment of funding possibilities.
 - Many ideas can be staged to provide new physics capability at each step, but some cannot.
- Stringing together projects that build upon previous investments either scientifically or through recycling of infrastructure is generally well received.

https://indico.fnal.gov/getFile.py/access?contribId=4&sessionId=2&resId=3&materiaIId=slides&confId=5841

- It's imperative to make the case for the physics we need,
- But we must also develop a coherent plan that is realistic if we want to preserve the health and vitality of the U.S. HEP program
- The challenges for <u>all</u> of the options presented here go beyond the technical

LHC and Its Upgrade Path
Very High Energy Options:
VHE-LHC
VLHC

HADRON COLLIDER CAPABILITIES

The LHC

Start	Facility	E _{CM}	Lumi (10 ³⁴ cm ⁻² s
2014	LHC	13-14 TeV pp	1⇒2 Peak
2024	HL-LHC	14 TeV pp	5 Leveled
2024	LHeC?	7 TeV p + 60-140 GeV e [±]	~.1-1
~2035	HE-LHC?	33 TeV pp	≥2

POINT 4 SECTOR 45 SECTOR 56 SECTOR 67 SECTOR 23 POINT 2 ALICE SECTOR 78 SECTOR 78 SECTOR 78 LHCb ATLAS 18 Jul 2008

A >3 decade hadron program

The LHC Sequence of Parameters

Parameter	LHC		HL-LHC		HE-LHC
Bunch Spacing	25 ns	50 ns	25 ns	50 ns	50 ns
Beam Energy [TeV]	6.5-7	6.5-7	7	7	16.5
n _b	2808	1404	2808	1404	1404
N _b (x10 ¹¹)	1.15(1.7)	1.7(2.0)	2.2	3.5	1.3
β* [m]	.55	.55	.15	.15	0.4-1
σ _{x,y} [μ m]	16.7	16.7	7.5	7.5	~10
$\sigma_{\rm z}$ [cm]	7.6	7.6	7.6	7.6	~6
Total Energy/beam [MJ]	362 (535)	267 (314)	692	550	482
L (peak) [10 ³⁴ cm- ² s ⁻¹]	~1 (2)	~1 (2)	5	2.5	2
Events/crossing	27 (54)	54 (108)	140	140	~60
<i>L</i> (int) [fb⁻¹/year]	40 (80)	40 (80)	250	250	250
L (int) [fb⁻¹, goal]	~3	00	~30	000	

() = ultimate parameters

Detector
Pile-up Issues
of concern

Chosen to limit Pile-up

Luminosity "Constraints"*

Total Current, limited by

- instabilities (eg, e-cloud)
- machine protection issues!

"Brightness", limited by

- · Space charge effects
- Instabilities
- Beam-beam tune shift (ultimate limit)

number of bunches. Bunch size bunches
$$L = \frac{\gamma f_{rev} n_b N_b^2}{4\pi\beta^* \varepsilon_N} R_{\varphi}$$

Geometric factor related to crossing angle and hourglass effect

3*, limited by

- magnet technology
- chromatic effects

Issues for the HL-LHC

• Reduce β*: 55 cm to 15 cm

- Requires move to Nb₃Sn
- Increases effect of crossing angle

 Baseline plan is to employ crab cavities

Luminosity Leveling

- Original goal of luminosity upgrade: >10³⁵ cm⁻²s⁻¹
 - Leads to unacceptable pileup in detectors
- New goal: 5x10³⁴ leveled luminosity

- Options
 - Crab cavities
 - $-\beta^*$ modifications
 - Lateral separation

LHeC: Options Considered

- RR: et circulate in new 60 CeV ring, which shares tunnel with LHC
- LR: CW Energy recovery linac collides 60 e[±] with LHC beam
- LR:* Pulsed energy recovery linac collides 140 GeV e[±] with LHC beam

Going Beyond LHC: Limits to Energy

- The energy of Hadron colliders is limited by feasible size and magnet technology. Options:
 - Get very large (eg, C~100 km)
 VHE-LHC in TLEP Tunnel or VLHC concept
 - More powerful magnets (HTS)

Important R&D and Questions for HE Hadron Colliders

- Magnets, magnets, magnets
 - New conductors: Nb₃Sn, HTS, hybrid designs
 - Rapid cycling SC magnets
 - Rad hardness and energy deposition studies (simulation and experiment).
- Machine Protection
 - Collimation design and materials research
 - Accelerator physics and simulation
 - Halo formation and beam loss mechanisms (historically not accurate)
- Crossing angle issues
 - Crab cavity development
 - New ideas: eg, flat beams
- Key question for the HEP community:
 - Luminosity vs. pile-up as a function of energy
 - What luminosity do you need?
 - What pile-up can you live with?

E. Prebys

e⁺e⁻ Circular Colliders: >100 GeV Scale

Linear Colliders:

- e⁺e⁻ Colliders with
 E < 1 TeV & E1> 1 TeV
- γ-γ Colliders

 $\mu^{+}\mu^{-}$ Colliders: Up to 10 TeV

LEPTON & PHOTON COLLIDERS

e⁺e⁻ Circular Colliders

Comments

- LEP2 nearly reached the Higgs
- Rings are robust and well-understood technology

Technical Issues

- Synchrotron Radiation: $\Delta E[GeV] = 8.85 \times 10^{-5} \frac{E}{M_{\odot}}$
- RF Efficiency
- Beam Lifetime (~10³ sec) and Top-Up Injection
- Collective Effects
- Energy Bandwidth

Trends in the Discussion

- Re-use of the LEP tunnel (conflict w/LHC) as well as various site-filler options initially discussed
- Recent focus: 80-100km ring leading to a 100 TeV scale hadron collider (VHE-LHC/VLHC)
 - Takes a longer term view
 - Limits SR issues

Electron-Positron Storage Rings: Parameters for Selected Options

	LEP2	TLEP* – HZ	TLEP* - t	FNAL** - HZ
Beam Energy [GeV]	104.5	120	175	120
Circumference [km]	26.7	80	80	100
Beam current [mA]	4	24.3	5.4	12.9
Number of bunches	4	80	12	34
Bunch population [10 ¹²]	0.575	40.8	9.0	0.79
Horizontal emittance [nm]	48	9.4	10	16
Vertical emittance [nm]	0.25	0.02	0.01	0.08
β_x^* [mm]	1500	500	1000	200
β_y^* [mm]	50	1	1	2
Hourglass factor	0.98	0.75	0.65	0.81
SR power/beam [MW]	11	50	50	20
Bunch length [mm]	16	1.7	2.5	3.2
Momentum acceptance [%]	1.25	9.4	4.9	3.0
Beam-beam parameter / IP	0.07	0.1	0.1	0.1
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.0125	4.8	1.3	1.8

e⁺e⁻ Circular Colliders

Status

- TLEP Design Study has been launched
- Not aware of any other significant effort underway

R&D

- Focus on detailed technical assessments
- Challenges, but no obvious showstoppers

Time

- TLEP: Conceptual Design Report by 2015
- TLEP: Technical Design Report by 2018
- TLEP: Aiming for construction readiness in 2020's

Technical Statement

Linear Colliders

Luminosity

$$\mathcal{L} = \frac{N^2 f_{coll}}{4\pi\sigma_x \sigma_y} \mathcal{H}_D$$

$$\mathcal{L} = \frac{P_b}{E_b} \left(\frac{N}{4\pi\sigma_x \sigma_y} \right) \mathcal{H}_D$$

- The strong fields at the interaction point result in
 - A luminosity enhancement characterized by the disruption parameter $\mathcal{H}_{\scriptscriptstyle D}$
 - Beamstrahlung emission gives rise to energy spread and backgrounds at the interaction point

Linear Collider Options

- A range of options have been explored
 - ILC: Based on SRF technology Most mature concept for E_{CM}<1 TeV

Yield '10 ~ '12:

- > 90% @ 25 MV/m
- ~ 80% @ 28 MV/m
- ~ 70% @ 35 MV/m
- CLIC: Based on drive-beam and NCRF technology RF Gradients: 100 MV/m Could be applied for E_{CM} <1 TeV, but designs up to 3 TeV are documented

Linear Collider Options

- Options (cont'd)
 - Wakefield Accelerators:

Potential for very high energies Possibly could be used for LC afterburner Significant R&D remains

 $-\gamma - \gamma$:

High power laser beams Compton backscattered from e⁻ or e⁺ beams

γγ⇔H cross section ~200fb

Concept could be applied at an ILC or CLIC

ILC Parameters

Centre-of-mass energy	E _{cm}	GeV	250	350	500	1000
Beam energy	E _{beam}	GeV	125	175	250	500
Estimated AC power	P_{AC}	MW	128	142	162	300
Collision rate	f_{rep}	Hz	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	5	5	4
Number of bunches	n_b		1312	1312	1312	2450
Bunch separation	Dt_b	ns	554	554	554	366
Pulse current	I _{beam}	mA	5.8	5.8	5.79	7.6
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.250
Electron polarisation	P_{-}	%	80	80	80	80
Positron polarisation	P_{+}	%	30	30	30	20
Luminosity (inc. waist shift)	L	×10 ³⁴	0.75	1.0	1.8	3.6
		cm ⁻² s ⁻¹				
Fraction of luminosity in top 1%	L _{0.01} /L		87.1%	77.4%	58.3%	59.2%

The ILC

Status

- Technical Design Report now complete
- Decision point on moving forward has been reached

R&D

- Most significant R&D issues addressed during ILC Technical Design Phase [SRF cavity R&D, including industrialization; FLASH beam tests; damping ring studies, CESRTA; damping ring and beam delivery system studies at KEK-ATF]
- Some technical challenges remain (eg, complete ATF2 program), but no obvious showstoppers

Time

- Team ready to move forward with detailed engineering and site-specific design
- Timescale contingent on decision process and international support

Potential Staged CLIC Parameters

parameter	symbol			
centre of mass energy	$E_{cm}\left[GeV\right]$	500	1400	3000
luminosity	$\mathcal{L}~[10^{34}~ ext{cm}^{-2} ext{s}^{-1}]$	2.3	3.2	5.9
luminosity in peak	$\mathcal{L}_{0.01} \ [10^{34} \ ext{cm}^{-2} ext{s}^{-1}]$	1.4	1.3	2
gradient	G [MV/m]	80	80/100	100
site length	[km]	13	28	48.3
charge per bunch	N [10 ⁹]	6.8	3.7	3.7
bunch length	$\sigma_{\sf z} \left[\mu {\sf m} ight]$	72	44	44
IP beam size	$\sigma_{x}/\sigma_{y} \ [nm]$	200/2.26	$\approx 60/1.5$	$\approx 40/1$
norm. emittance	$\epsilon_{x}/\epsilon_{y}~[nm]$	2400/25	660/20	660/20
bunches per pulse	n _b	354	312	312
distance between bunches	$\Delta_{b} \; [ns]$	0.5	0.5	0.5
repetition rate	f _r [Hz]	50	50	50
est. power cons.	P _{wall} [MW]	271	361	582

Linear Colliders with E > 1 TeV

- ILC is ~ 50 km at 1 TeV
 - Possible to consider higher gradient SCRF materials or PWFA boost
- CLIC design is aimed at upgradable design → 0.5-3 TeV
 - Geographic gradient of 4x higher than ILC
- Advanced acceleration options (plasma, dielectric)
 - Plasma acceleration has made great progress however still huge challenges in beam quality and stability
 - Extremely low charge dielectric-laser accelerators may provide only reasonable parameters in multi-TeV regime
 - None of AARD options are close to being ready
- Some plasma and dielectric options act as transformers taking high power beams high energy beams
 - Possible to develop upgrade options for ILC-like technology?

Concept of Beam-Driven Plasma Linac

- Concept for a 1 TeV plasma wakefield-based linear collider
 - Use conventional Linear Collider concepts for main beam and drive beam generation and focusing and PWFA for acceleration
 - Makes good use of PWFA R&D and 30 years of conventional rf R&D
 - Concept illustrates focus of PWFAR&D program
 - High efficiency
 - Emittance preservation
 - Positrons
 - Allows study
 of cost-scales
 for further
 optimization of R&D

Challenges for Positron M. Hogan Plasma Wakefield Acceleration

Positron Witness Bunch

Electron Drive Bunch

Positive Ion Background

Accelerating and Defocusing Field for Positrons

Decelerating and Focusing Field for Electrons

Acceleration and focusing by Hollow Channel Plasmas

In a hollow channel plasma, the plasma electrons originate from the same initial radius, and receive a fast kick from the drive beam. They travel toward the beam axis and form a coherent accelerating and focusing wake for positron beam.

Possible Linear Collider Parameters

			10 T-V	10 T-V	10 T-V
	^ -	A M T I C T T C	10 TeV	10 TeV	10 TeV
Case	0.5 TeV ILC	3 TeV CLIC	Dielectric	Plasma	Dielectric
			Beam Acc.	Accelerator	Laser Acc.
Energy per beam (TeV)	0.25	1.5	5	5	5
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	2	6.4	49	71.4	105
Electrons per bunch (×10 ⁹)	20	3.7	4	4	0.002
Rep. rate (Hz) / number / train	5 / 1312	50 / 312	50 / 416	17,000 / 1	25,000,000 / 1
Horizontal emittance $\gamma \varepsilon_r$ (nm-rad)	10,000	660	1000	200	0.1
Vertical emittance $\gamma \varepsilon_{v}$ (nm-rad)	30	20	10	200	0.1
β* x/y (mm)	11 / 0.2	4 / 0.1	10 / 0.1	0.2	0.4
Horizontal beam size at IP σ_{r}^{*} (nm)	474	49	32	2	0.06
Vertical beam size at IP σ_{ν}^* (nm)	3.8	1.0	0.3	2	0.06
Luminosity enhancement factor	1.6	1.9	1.9	1.35	6.05
Bunch length σ_z (µm)	300	50	20	1	335
Beamstrahlung parameter Y	0.07	6.7	56	8980	0.4
Beamstrahlung photons per electron n_y	1.7	1.5	1.4	3.67	0.5
Beamstrahlung energy loss δ_F (%)	4.3	33	37	48	4.3
Accelerating gradient (GV/m)	0.031	0.1	0.5	10	0.5
Average beam power (MW)	5.3	13.9	55	54	38
Wall plug power (MW)	200	568	~1200	~1200	~550
One linac length (km)	15.5	23.5	10	1.0	10.5

ILC and CLIC parameters from design reports; 10 TeV DBA scaled from Wei Gai communication; 10 TeV DLA and Plasma Accelerator from 2010 ICUIL/ICFA Workshop

CLIC and Wakefield LCs

Status

- CLIC Conceptual Design Report complete
- Wakefield Accelerator Concepts Feasibility being assessed

R&D

- CLIC: Focus on technology and advanced systems R&D
- Wakefield Accelerators:
 - Ability to accelerate positrons
 - Demonstration of multi-stage acceleration
 - Understanding the extrapolation of all parameters to the regimes required for HEP accelerator use (emittance preservation, achievable energy spread, beam loading, repetition rate)

CLIC: Timescale dependent on finalized technical design and physics

• Wakefield LCs:

needs

- Expect non-HEP applications on the ~decade timescale
- Collider R&D phase to fully assess feasibility is likely decades scale
- First application might be an ILC "afterburner"

γ-γ Collider Concepts

- γ-γ Higgs Factory (E_{CM}~160 GeV, photons carry ~80% of CM E) might represent a `low cost' option to demonstrate the technology
- Relative to LC: No positrons, damping rings, bunch compressors, ...
- Laser parameters are challenging; requires optical cavity schemes

	SAPPHIRE
Beam Energy	80 GeV
Power Consumption	100 MW
Polarization	80%
Ave Beam Current	0.32 mA
E-e- geometric luminosity	2.2x10^34
Laser wavelength	351 nm
Repetition rate	200 kHz
Laser pulse energy	~5 J

CLICHÉ: CLIC Higgs Experiment

γ-γ Colliders

Status

- Principal technical challenge is laser system
- Question: Would the community be interested in a standalone facility versus eventual companion capability with an e⁺e⁻ LC?

R&D

- Validate feasibility of required laser
- Would need to establish Technical Design

Time

 In principle, a decision point could be reached in a few years

Muon Accelerator Concepts

Muon Accelerators

Accelerator	Energy	/ Scale	Performance
Cooling Channel	~200	MeV	Emittance Reduction
MICE	160-240	MeV	10%
Muon Storage Ring	3-4	GeV	Useable μ decays/yr*
vSTORM	3.8	GeV	3x10 ¹⁷
Intensity Frontier v Factory	4-10	GeV	Useable μ decays/yr*
FNAL NF Phase I (PX Ph 2)	4-6	GeV	8x10 ¹⁹
FNAL NF Phase II (PX Ph 2)	4-6	GeV	5x10 ²⁰
IDS-NF Design	10	GeV	5x10 ²⁰
Higgs Factory	~126	GeV CoM	Higgs/yr
s-Channel μ Collider	~126	GeV CoM	5,000-40,000
Energy Frontier μ Collider	> 1	TeV CoM	Avg. Luminosity
Opt. 1	1.5	TeV CoM	1.2x10 ³⁴ cm ⁻² s ⁻¹
Opt. 2	3	TeV CoM	4.4x10 ³⁴ cm ⁻² s ⁻¹
Opt. 3	6	TeV CoM	12x10 ³⁴ cm ⁻² s ⁻¹

^{*} Decays of an individual species (ie, $\mu^{\scriptscriptstyle +}$ or $\mu^{\scriptscriptstyle -}$)

Program Baselines

MAP Designs for a Muon-Based Higgs Factory and Energy Frontier Colliders

Muor	n Collider	Baseline	Parameters
iviuoi	Comaer	baseime	Parameters

Higgs Factory Multi-TeV Baselines Upgraded Cooling / Initial Combiner **Parameter** Units Cooling TeV 0.126 0.126 1.5 3.0 **CoM Energy** 10³⁴cm⁻²s⁻¹ 0.008 Avg. Luminosity 0.0017 1.25 4.4 0.004 Beam Energy Spread % 0.003 0.1 0.1 Circumference km 0.3 0.3 2.5 4.5 No. of IPs 15 15 12 30 Repetition Rate H₇ ß* 1.7 1 (0.5-2) 0.5 (0.3-3) 3.3 cm 10^{12} No. muons/bunch No. bunches/beam Norm. Trans. Emittance, ε_{TN} 0.4 0.2 0.025 0.025 π mm-rad 1.5 70 70 Norm. Long. Emittance, ε_{IN} π mm-rad 5.6 6.3 0.5 Bunch Length, σ_s cm Beam Size @ IP 150 75 μm Beam-beam Parameter / IP 0.005 0.02 0.09 0.09 4[♯] **Proton Driver Power** MW 4

*Could begin operation with Project X Phase 2 beam

Exquisite Energy Resolution **Allows Direct** Measurement of Higgs Width

Site Radiation mitigation with depth and lattice design: ≤ 10 TeV

Muon Colliders

Status

MAP Feasibility Assessment underway

R&D

- Establishing Initial Baseline Design
- Technology R&D: Cooling channel hardware, RF in B-fields, high field magnets (synergistic with HE-LHC needs)
- Staging Study: Physics + R&D + Demos required for next stage
- Muon Ionization Cooling Experiment

Time

- Feasibility Report by end of decade
- Completion of MICE by end of decade
- NuMAX (initial long baseline NF): Informed Decision by ~2020
- Collider Options: Informed Decision point by mid-2020s

Long-Term Perspective

Conclusions

CLOSING REMARKS

Some Connections...

- A theme that has arisen in the capabilities discussions has been that of upgrade paths
 - Note that a number of "constrained" options didn't even get mention in this presentation
- There are many special synergies that also come into play:
 - -TLEP & VHE-LHC
 - MC and the Neutrino Program
 - Technology linkages (eg, MAP and HE LHC magnet development)
 - $-\gamma \gamma$ as a companion capability to an LC
 - A wakefield accelerator upgrade to a conventional LC
 - And this is not an exhaustive list…

US-HEP Energy Frontier

Research Program

Support Strong
Global Connections

Develop the Next Generation(s) of Accelerator Specialists

Nurture a Vibrant and Cutting Edge Accelerator R&D Program

Maintain Investment in World Class Domestic HEP Accelerator Capabilities and Infrastructure

Conclusions I

- The LHC program for the next 20 years is welldefined
 - Questions arise as to what comes next
 - For example: Is an investment in a facility such as TLEP desirable on the 10 year timescale because it can lead to a VHE-LHC/VLHC capability in 30 years?
- There is little question that the ILC design is, at present, the most complete and well-studied design for a machine targeted at the Higgs
 - But, what will we do if the next round of LHC data finally shows something at > 1 TeV?
 - On the relevant timescale (assuming advances in the R&D program), we may want to consider comparisons such as the plot on the next page...

Conclusions II

- The necessity of US engagement in the ongoing LHC program is clear
- As is maintaining global connections if the next collider facility is off-shore
- At the same time we cannot ignore other elements of the US HEP program
 - Investing in our domestic facilities which support non-collider portions of HEP
 - Maintaining a robust R&D program which benefits both our global connections and can open the door to additional world class capabilities in the US
 - And continue to train the experts to support the next generation of facilities