

outline

- physics at the energy frontier
- instrumentation frontier
- request for input
- challenges for energy frontier machines
- technology R&D themes
- facilities
- conclusion

we can look back on tremendous successes

most notably

- the Higgs boson

made possible by advances in technology and instrumentation

- large accelerators and collider detectors
- would like to do everything
 - measure position to microns
 - measure timing to picoseconds
 - measure energy deposit to eV
 - highly pixelated trackers and calorimeters
 - read it all out, all the time
- all at low cost, minimal power, and no mass ...
- real detector designs driven by
 - constraints of the accelerator environment
 - physics needs
 - technical capabilities
 - cost

- characterize the Higgs boson
 - branching fractions
 - coupling constants, self-coupling
 - search for extended Higgs sector
- study vector-boson scattering

- SUSY
 - severely constrained by existing limits
 - light stop squarks (natural SUSY)
 - compressed spectra
- exotic phenomena

- as beam energy increases, we are still looking at ewk scale phenomena involving W and Z bosons and their decay products
- maintain acceptance to relatively soft particles
- maintain large angular acceptance to minimize theoretical uncertainties and retain sensitivity to distinguish between different models should we find something new
- superior spatial and time resolution for pattern recognition in high occupancy environment

CPAD/Instrumentation Frontier

- to continue our success at the energy frontier we need to make technical and scientific innovation a priority as a field
- APS recognized this by
 - creating the Coordinating Panel for Advanced Detectors (CPAD) to study strategic issues in instrumentation
 - including the "Instrumentation Frontier" as one of the central thrusts of the 2013 Snowmass process
- Instrumentation Frontier workshops:
 - Argonne https://indico.fnal.gov/conferenceTimeTable.py?confld=6050
 - Boulder https://indico.fnal.gov/conferenceTimeTable.py?confld=6280

Instrumentation Frontier Organization

Conveners: M. Demarteau (ANL), H. Nicholson (Mt. Holyoke), R. Lipton (Fermilab)

Technologies	Energy Frontier	Intensity Frontier	Cosmic Frontier
	Ulrich Heintz	David Lissauer	Juan Estrada
Sensors Marina Artuso Abe Seiden	Daniela Bortoletto (Purdue) Sally Seidel (New Mexico) Ren-yuan Zhu (Caltech)	Matt Wetstein (Chicago) Henry Frisch (Chicago) J. Va'vra (SLAC)	Andrei Nomerotksi (BNL) Clarence Chang (Chicago) Jim Fast (PNNL)
Gaseous Detectors Gil Gilchriese Bob Wagner	Andy White (UTA) Marcus Hohlmann (FIT) Vinnie Polychronakos (BNL)	James White (Texas A&M) Brendan Casey (FNAL)	
Detector Systems Ed Blucher David Lissauer	Roger Rusack (Minnesota) Adam Para (FNAL)	Bonnie Fleming (Yale) Bob Svoboda (UC Davis)	Karen Byrum (ANL) Peter Gorham (Hawaii) David Nygren (LBL) Dan Akerib (Case Western) Greg Tarle (Michigan)
Electronics/DAQ/Trigger Ulrich Heintz Ron Lipton	Dong Su (SLAC) Wesley Smith (Wisconsin) Maurice Garcia-Sciveres (LBNL)	Gary Varner (Hawaii) Yau Wah (Chicago)	Günther Haller (SLAC) Frank Krennrich (Iowa State)
Novel/Emerging Technologies Jim Alexander David MacFarlane	Ted Liu (FNAL) Julia Thom (Cornell)	Steve Ahlen (BU)	Juan Estrada (FNAL)
Software Norman Graf	Erich Varnes (Arizona)	Robert Kutschke (FNAL)	Salman Habib (ANL)
Facilities	Carsten Hast (SLAC)	Jae Yu (UTA)	Erik Ramberg (FNAL)

Instrumentation Frontier Goals

collected white papers (1 pagers)

http://www.snowmass2013.org/tiki-index.php?page=Instrumentation+Frontier+Whitepapers

- summary white papers covering
 - energy, intensity, and cosmic frontiers
 - each instrumentation topic
- pull it all together in an instrumentation white paper
 - identify R&D themes that transcend the frontiers
 - connect R&D to physics needs
 - in which areas can the US play a lead role?
 - how do we best exploit the facilities and resources we have?

questions

- can you identify benchmark physics goals that push the technology of current detectors?
 - measurement of Higgs couplings
 - VBF production of Higgs boson (large η acceptance)
 - low mass stop searches (soft pT spectrum of decay products)
- what is the performance that you are assuming for simulations?
- which aspects of detector performance are critical for each of these?
 - which parameters are most important to improve on?
- what improvements in the detector would be transformational for the physics reach?
 - hadron calorimeter with em-like energy resolution?
 - ps timing of calorimeter signals?
 - _ ...???

questions

- do you know how much the physics reach changes as certain detector properties are varied? Can you be quantitative: how much of an improvement is needed to make a difference?
 - does a 10-20% improvement in resolution matter?
 - do we need factors of 2 or 10?
- how important is fast time stamping of the signals from the detector? For which detector parts would this be most important?
 - calorimeter? tracker?
- how important is the forward region?
 - how far in η do we need to cover?
- how important is high b-tagging efficiency at low pT/at high pT?
- what are the requirements for triggers? In particular: how important are tau triggers, missing ET triggers and missing ET resolution? How important are inclusive lepton trigger thresholds?

hadron collider facilities

facility	\sqrt{s}	L	$\int Ldt$	time scale
LHC	14 TeV	10^{34}	300/fb	2015-2021
HL-LHC	14 TeV	5×10^{34}	3000/fb	2023-2030
HE-LHC	26-33 TeV	2×10^{34}	300/fb/year	>2035
VHE-LHC	42-100 TeV			>2035

European Strategy for Particle Physics Preparatory Group: Physics Briefing Book, CERN-ESG-005

environment at hadron colliders

	2012
beam energy	4 TeV
luminosity	$7.7 \times 10^{33} / \text{cm}^2 / \text{s}$
integrated luminosity	24/fb
number interactions/crossing	≈ 20
bunch spacing	50 ns
radiation dose (R≈5 cm)	$3 \times 10^4 \text{ Gy}$

environment at hadron colliders

	2012	HL-LHC
beam energy	4 TeV	7 TeV
luminosity	$7.7 \times 10^{33} / \text{cm}^2 / \text{s}$	$5 \times 10^{34}/\text{cm}^2/\text{s}$
integrated luminosity	24/fb	3000/fb
number interactions/crossing	≈ 20	≤ 140
bunch spacing	50 ns	25 ns
radiation dose (R≈5 cm)	$3 \times 10^4 \text{ Gy}$	$5 \times 10^6 \text{ Gy}$

environment at hadron colliders

	2012	HL-LHC	
beam energy	4 TeV	7 TeV	
luminosity	$7.7 \times 10^{33} / \text{cm}^2 / \text{s}$	$5 \times 10^{34} / \text{cm}^2 / \text{s}$	
integrated luminosity	24/fb	3000/fb	
number interactions/crossing	≈ 20	/ ≤ 200	
bunch spacing	50 ns	25 ns	
radiation dose (R≈5 cm)	$3 \times 10^4 \text{ Gy}$	$\sqrt{5 \times 10^6 \text{ Gy}}$	
challenges: interaction rate pileup			
radiation damage			

challenges

- interaction rate
 - increase rejection power of trigger system
 - low power, high bandwidth links
- pileup
 - pixelization
 - precision timing
- radiation damage
 - radiation hard detector technologies
 - operate at low temperatures

lepton collider facilities

facility	\sqrt{s}	L
ILC	0.5 TeV	1.5×10^{34}
CLIC	3 TeV	5.9×10^{34}
TLEP	240 – 350 GeV	
Higgs factory MuC	m_{H}	$10^{31} - 10^{32}$
energy frontier MuC	3 – 6 TeV	$10^{34} - 10^{35}$

environment at e⁺e⁻ colliders

environment at μ+μ- colliders

- bunch spacing: 500 ns (Higgs factory), 10 μs (EF)
 - lots of time to read out detector
- backgrounds are large
 - -1.3×10^{10} /m/s muon decays for 2 beams @ 0.75 TeV
 - radiation dose 10³ 10⁴ Gy/year
 - detectors must be radiation hard
 - soft and out of time

challenges

- separate hadronic W/Z decays
 - superior calorimeter resolution
 - high pixelization

- short bunch spacing (CLIC)
 - precise timing
- high background levels (MuC)
 - precise timing
 - radiation tolerance

H→WW/ZZ separation at ILC

enabling technologies

Pixelization

- Microelectronics feature size reduction
- New interconnect technologies
- Low power data transmission
- Technologies for 3D electronics
 Speed
- Faster sensor technologies
- Low power, fast electronics
- Lower capacitance detectors (see pixelization, 3D silicon)

Resolution

- Smaller tracker elements (see pixelization)
- Improved understanding of hadron showers
- Imaging calorimetry (see pixelization)

Mechanics and Power

- Carbon fiber supports
- Foamed thermally conductive materials
- CO₂ cooling
- Power delivery using DC-DC conversion or serial powering

Data transmission

- Low power optical interconnects
- Wireless transmission
- Low power signaling
- Waveform digitization

Costs

- Large area arrays utilizing new technologies (LAPPD)
- Wafer scale integration (3D)
- High yield assembly techniques (active edge sensors)

trigger for hadron colliders

instantaneous luminosity increases by O(10)

- increased pileup leads to non-linear increase in trigger rates
- improve rejection power of trigger
 - L1 track trigger
 - use full granularity of detector in trigger
 - compact high-density optical connectors and receivers
 - ATCA and μTCA crates with high-speed star and mesh backplanes
 - 3d technology for associative memory **ASICs**
 - exploit state of the art FPGAs and processing units such as GPUs

L1 track trigger for LHC

- region of interest trigger (ATLAS)
 - read out hits near L1 electron or L1 muon
 - sharpens pT turnon curve

- self-seeded trigger (CMS/ATLAS)
 - requires on-detector data reduction
 - use closely spaced sensors to reject low tracks
 - find all tracks in a cone around L1 electron or L1 muon
 - associate tracks with vertices
 - track based isolation for L1 electron or L1 muon
 - vertical connection of sensor and readout chip

ASICs (application specific integrated circuits)

ASICs

- are fundamental component of instrumentation for all three frontiers
- allow high channel density,
- improve analog performance (e.g. noise, speed)
- enable data reduction,
- lower power dissipation, reduce cabling, mass

R&D to develop

- high-speed waveform sampling, picosecond timing
- low-noise high-dynamic-range amplification and shaping
- digitization and digital data processing
- high-rate data transmission
- low temperature operation
- radiation tolerance

next generation trackers

- momentum and impact parameter resolution in high rate environment
 - improved two track separation
 - highly pixelated, thin sensors
- time measurement
 - thin sensors
- radiation hard
 - operate at low temperature
- low mass
 - power distribution for increased channel count and fast data links
 - multipurpose support structure
 - more efficient cooling

pixel tracker challenges

- hybrid pixel detectors (state of the art)
 - highest rate capability (300 MHz/cm^2)
 - radiation tolerance to 5x10^15 neq/cm^2
 - 130nm CMOS readout chip
- for HL-LHC
 - triple rate/dose requirements
 - need smaller feature size (65nm CMOS)
 - IC would contain 500M transistors
 → large design project
 - improve two track separation
 - smaller pixels
 - thinner sensor

UC Davis Physics Department

MAPS (monolithic active pixel sensors)

- sensor and readout circuitry implanted in the same Si wafer
 - single chip solution without bump bonding
 - less mass than hybrid pixel detectors
 - lower capacitance
 - thin Si sensors (≈50 μm)
 - high granularity
- could include more functions in pixel cells
 - e.g. zero suppression at the pixel level
- 3D integration
 - allows combination of sensor and readout chip with different feature sizes/technologies
- sensor stitching
 - at thickness < 50 μm sensor no longer dominates mass
 - route signals and clocks through metals lines on the chip

Electronic Instrumentation Lab, U Pavia

monolithic pixel sensor, LBL

3D pixel sensors

- planar sensors
 - collect charge with implant pixels on sensor surface
- 3D sensors
 - collect charge with implant columns in bulk
 - smaller depletion depth
 - faster charge collection
 - lower leakage current
 - lower depletion voltage
 - lower power dissipation
 - more radiation tolerant

ATLAS IBL sensors - CERN

4D ultra-fast silicon detectors

- combine precise spatial resolution with ps time resolution
 - based on
 - thinned silicon (≈5 μm) to reduce charge collection time
 - increase charge collected using charge multiplication in bulk
 - develop readout system to match sensor rate, segmentation and time measurement capabilities
- R&D required
 - wafer processing options
 - n-bulk vs p-bulk,
 - planar vs 3D sensors
 - · epitaxial vs float zone
 - depth and lateral doping profile

diamond sensors

- chemical vapor deposition (CVD) diamond
 - band gap 5.5 eV (silicon: 1.1 eV)
 - displacement energy 42 eV/atom (silicon: 15 eV)
 - only 60% as many charge carriers as silicon
 - radiation tolerant
 - low Z
 - do not require extensive cooling
- currently two viable industrial suppliers

support, cooling, power

- next generation trackers will
 - have increased power density
 - high channel count
 - high speed data links
 - radiation damage
 - require
 - efficient cooling
 - low mass support and services
- R&D directions
 - new materials
 - low Z, stiff, thermally conductive, radiation hard
 - carbon foams/fibers, ceramics
 - multifunction structures
 - DC/DC converters
 - reduced power dissipation

carbon composite structure

micro-machined cooling channel

high resolution hadron calorimeter

- need $\frac{\sigma}{E} \le \frac{30\%}{\sqrt{E}}$ to separate W \rightarrow qq and Z \rightarrow qq
- resolution limited by fluctuations in hadronic showers
- compensating calorimeters
 - same response for EM and hadronic component
 - neutrons liberated in hadronic interactions → slow
- dual readout calorimeters
 - measure EM/had ratio using Cerenkov light (EM) and scintilation light (EM+had)
 - resolution limit $\frac{\sigma}{E} \le \frac{15\%}{\sqrt{E}}$
 - Pb/Cu + scintillating fibers sampling calorimeter
 - homogeneous crystal calorimeter
 - · needs dense and economical material

high resolution hadron calorimeter

- particle flow algorithm
 - reconstruct individual particles in shower
 - apply particle specific corrections
 - measure charged particles in tracker
 - measure photons in em calorimeter
 - measure neutral hadrons in hadron calorimeter
 - planned for e+e- collider detectors
- imaging calorimeters
 - particle flow requires detailed image of shower
 - requires high granularity detectors
 - micro-pattern gas detectors

Typical topology of a simulated 250GeV jet in CLIC ILD

micro-pattern gas detectors

applicable for calorimeters and trackers

 potentially low cost, large area, high granularity, fast, radiation hard

- plasma panel sensors (PPS)
 - resemble plasma-TV display panels, modified to detect gas ionization in the individual cells
- resistive plate chambers (RPC)
 - improve rate capabilities, granularity
- flat panel microchannels
- gas electron multipliers (GEMs)
- micromegas

solid state photo detectors

- Silicon Photomultipliers (SiPM)
 - Geiger-mode APDs
 - low power
 - low voltage
 - low noise (compared to APDs)
 - compact
 - excellent timing resolution
 - insensitive to magnetic fields

- Si is sensitive to radiation
 - need to cool devices to keep leakage current down
 - GaAs or InGaAs
- Si has small attenuation length for UV light
 - needed to detect Cerenkov light
 - SiC (bandgap = 3.2 eV)

SiPM mounting card - CMS

facilities and resources

national labs

- universities
 - interdisciplinary opportunities
 - nanofabrication facilities
- industry
 - piggy back on commercial developments
 - take advantage of SBIR program to fund R&D collaborations

conclusion

- in order to realize our physics goals, we need to invest in technology R&D
- the challenges at energy frontier facilities will be substantial
- there are many ideas for instrumentation that can address these challenges
- we need your input to identify the R&D avenues with the most promising physics potential

acknowledgements

- thanks to all white paper authors
 - see following two pages for listing

- special thanks to Ron Lipton
 - SLAC summer institute July 9 & 11
 - "Instrumentation on the Energy Frontier"

White papers

- Level 1 Track Triggers at HL-LHC
 - E. Grunendahl, M. Johnson, R. Lipton, T. Liu, A. Ryd, L. Spiegel
- Tracker and Vertex Detector for a Muon Collider
 - V. Di Benedetto, C. Gatto, R. Lipton, A. Mazzacane, N.V. Mokhov, A. Para, S.I. Striganov, N.K. Terentiev, H. Wenzel
- Operation of Collider Experiments at High Luminosity
- Noble Liquid Calorimeters
- Triggers for hadron colliders at the energy frontier
 - W. Smith
- A Differential Time-of-Flight Technique for Collider Detectors
- Hadronic dual-readout calorimetry for high energy colliders
 - RD52 Collaboration
- Atlas Upgrade Instrumentation
 - G. Brooijmans, H. Evans, A. Seiden
- Combination of Active Edge and 3D Electronics Technologies
 - R. Lipton, C. Kenney, S. Parker, L. Spiegel, J. Thom
- Plasma Panel Detectors for Ionizing Particles
 - R. Ball, J. R. Beene, Y. Benhammou, E. H. Bentefour, J. W. Chapman, E. Etzion, C. Ferretti, P. S. Friedman, D. S. Levin, M. Ben Moshe, Y. Silver, R. L. Varner, C. Weaverdyck, and B. Zhou
- 3D Sensor Architecture
- Development of Resistive Plate Chambers
 - Burak Bilki, Kurt Francis, José Repond, Lei Xia (ANL)
- Powering Future Particle Physics Detectors
 - S. Dhawan (Yale), R. Sumner (CMCAMAC), R. Khanna (Texas Instruments)
- Imaging Calorimetry
- Future Crystal Electromagnetic Calorimetry

White papers

- Development of Cost-effective Crystals For Homogenous Hadron Calorimetry
- Application Specific Integrated Circuits (ASICs) for HEP applications
- The Next Generation of Crystal Detectors
 - Ren-Yuan Zhu (CalTech)
- Use of Flat Panel Microchannel Plates in Sampling Calorimeters with Timing
 - Anatoly Ronzhin (Fermilab) and Henry Frisch (EFI, Univ. of Chicago)
- Micro-Pattern Gas Detectors for Charged-Particle Tracking & Muon Detection
 - M. Hohlmann (Florida Inst. of Tech.), V. Polychronakos (BNL), A. White and J. Yu (UTA)
- Low Mass Support and cooling
 - William Cooper, Fermilab; Carl Haber, LBNL; David Lynn, Brookhaven National Lab
- Monolithic Pixel Sensors
 - M. Battaglia
- High speed, massively parallel, ATCA based Data Acquisition Systems using modular components
- The Next Generation of Photo-Detectors for Science in the Cosmic, Intensity and Energy Frontiers
 - K.Arisaka, J.Buckley, K.Byrum, H.Frisch, N.Otte, E.Ramberg, O.Siegmund, M.Sancheza, G.Varner, J.Va'vra, R.G.Wagner, M.Wetstein
- Future Developments in Gigasample-per-second Waveform Sampling Application Specific Integrated Circuits
 - Eric Oberla, Kurtis Nishimura
- Micro-Pattern Gas Detectors for Calorimetry
 - J. Yu (UTA), M. Hohlmann (Florida Inst. of Tech.), V. Polychronakos (BNL) and A. White
- Emerging Optical Link Technologies for HEP
- Opportunities for HEP Technology Evaluation in Smaller-Scale NP Experiments
 - P. Nadel-Turonski (JLAB) and G. Varner (University of Hawaii)
- Synergies Between Detector Development in Nuclear and Particle Physics
 - C. Woody (BNL), T. Hemmick (Stony Brook University), P. Nadel-Turonski (JLAB)