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THE MUON COLLIDER AS A HI/A 1%{
FACTORY

* The couplings of the Higgs-like particle discovered
at the LHC are consistent with the SM expectations
for the particle associated with electroweak
symmetry breaking.

 However, the SM is incomplete. Extensions to SUSY
or more generally Two Higgs-Doublet Models
(2HDM) require five scalar particles: h°, H°, A%, H*.
Decay amplitudes depend on two parameters, a and
S.

* In the decoupling limit, m, >> m,: h° is SM-like; and
H°, A% H*are nearly mass-degenerate and have
suppressed couplings to VV.
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HIA PRODUCTION A
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« Since 126 GeV is at the upper end of expectations for
m, in SUSY models, reevaluations of viable models
lead to heavy sparticles and heavier H/A are
considered, consistent with current limits.

* H/A are relatively narrow since couplings to VV are
suppressed and large tan 8 suppresses couplings to
up-type fermions.

* HI/A are likely to be difficult to find at the LHC, and at

e* e” colliders must be produced in association with
other particles, such as Z, since the electron Yukawa
coupling is too small for s-channel production.
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A MUON COLLIDER AS AN H/A 1&[
FACTORY

 The Hand A can be produced as s-channel
resonances at a muon collider. Recently Eichten
and Martin (arXiv:1306.2609) have examined
this possibility.
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Some ILC Benchmark examples:

Light-slepton NLSP model (TDR4) _ ™
Hidden supersymmetry (HS) B
Natural supersymmetry (NS)

Non-universal Higgs mass (NUHM)

0.01

Vs (TeV)
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A MUON COLLIDER AS AN H/A
FACTORY (E. Eichten and A. Martin [arXiv:1306.2609])

- Generic features but look in detail at NS ejxample:

TABLE 1. Properties of the H and A states in the Natural
Supersymmetry benchmark model [35]. In addition to masses
and total widths, the branching ratios for various decay modes

are shown.
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A MUON COLLIDER AS AN H/A Sy 1%
FACTORY (E. Eichten and A. Martin [arXiv:1306.2609])
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- Large production rate: Events/year = 154,000 z<<(1034 £ _1)(1 L )? BR(H/A — p™p”)

cm—2s Mg /A 10—4

- Use b b decays to extract H and A properties:

TABLE II. Fit of the H/A region to background plus Breit- B
Wilgner resonances. Both a single and two resonance fits €eam
are shown. General form of the background fit is op(\/s) =

1(1.555)2 /s( in TeV?). The values of the best fit for one or energy
two Breit-Wigner resonances are given.

R resolution
Mass(GeV)  [(GeV) Tpeak (PD) R~ 0.001

1555 £0.1GeV 242+£02  1.107 + 0.0076
x2/ndf = 363/96 ey = 0.0354 £ 0.0006

Two Resonances
Mass(GeV)  T(GeV) opeak (Db)
1550 £0.5GeV 19.3+£0.7 0.6274 £ 0.0574 A5 1500 1550 1NN 1850
1560 £0.5GeV 20.0£0.7 0.6498 % 0.0568

x?/ndf = 90.1/93 1 = 0.040 £ 0.0006

-— ’t-{-‘t-
Extract branching ratios

* Use tau decays to measure CP

events, L, = 500 fb”!

- electroweakino's
* 20% of decays

A= T500 " 550 7000 7850
: . — N s (GeV)
* self analysing - unlike the ILC, initial beam polarization

not essential.

Snowmass Energy Frontier Meeting, Seattle, June 30-July 3, 2013 G. Hanson, UC Riverside 6



THE MUON COLLIDER AS A H/A *1%
FACTORY: DETECTOR CHALLENGES

Anna Mazzacane et al.

 In order to fully exploit the opportunity of the Muon
Collider as an H/A factory, the detector must meet very
demanding requirements (excellent tracking and
calorimetry) pushing the limits of the technologies

« The background is mainly from the interaction of beam
muon decay products with beamline componets and the
accelerator tunnel

« Shielding structures are needed to reduce this
background to acceptable levels: a tungsten nozzle near
the IP

* Previous studies have shown that this background is out
of time w.r.t. the physics and can be reduced by making
timing cuts
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THE MUON COLLIDER AS AN H/A X
FACTORY: DETECTOR CHALLENGES T/

(continued) o
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DETECTOR AND PHYSICS ?_,}(’{
SIMULATION Adh

* The detector used in these studies has been developed
within the ILCroot framework and is an evolution of the
detector adopted for the ILC benchmark studies.
Shielding structures and dead materials for the supports
are included.

.~ 4000 H/A events generated with PYTHIA atv/s = 1.5
TeV and Gaussian beam energy smearing (R = 0.001)
(A. Martin) are fully simulated in the ILCroot framework
with track and calorimeter reconstruction.

* In these preliminary studies the bb decay (64% B.R.) is
considered.

* The analysis process with full beam background is still

work in progress and will be presented in Minnesota.
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ANALYSIS STRATEGY &

Perfect b-tagging applied (using information from TC/

'Of'Ogra(“

Monte Carlo truth)

Assume jet made of 2 non-overlapping regions:

— Core: region of the calorimeter with overlapping towers
— Outliers: hit towers separated from the core

Measure the Jet axis
— Using information from trackers

Measure the Core energy
— Using calorimeter information

Reconstruct Outliers individually

— Using tracking and/or calorimetry depending on the charge of the
particles

Add Muons escaping from calorimeter
— Using muon spectrometer

No cuts applied to visible energy to compensate for
missing energy from neutrinos (preliminary)
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ANALYSIS RESULTS TN

Reconstructed mass from calorimeter and tracher information

Pr ogra®®
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Dijet mass distribution including neutrino contribution
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Preliminary studies: Detector performance not affected by presence of shielding nozzle
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