Determination of the CP parity of
 Higgs bosons in their tau decay channels at the ILC

Stefan Berge
Johannes Gutenberg-University Mainz
Snowmass: Seattle Energy Frontier Workshop
July 1, 2013
University of Washington

Introduction

- LHC: At least one scalar boson, probably Spin-0, with $m_{h}=126 \mathrm{GeV}$
- If it is one boson: $h^{0}, H^{0}(C P$-even $), A^{0}\left(C P\right.$-odd) or $h_{1}(C P$-mixed) state
- It is not a pure $C P$-odd state $A^{0}(h \rightarrow Z Z$: CMS-PAS-HIG-13-002, ATLAS-CONF-2013-013; and 1211.1980)
- No large anamolous $A^{0} Z Z$ coupling (because of $h \rightarrow Z Z$)
\rightarrow large cross section in $e^{+} e^{-} \rightarrow h Z$
- If there is more than one Higgs boson (2HDM), degenerated in mass
- E.g. A^{0} and $H^{0}: \rightarrow H^{0}$ is produced in $e e \rightarrow Z H^{0}$ with large cross section at ILC
- E.g. h^{0} and H^{0} : or several CPmix: $\rightarrow e e \rightarrow Z h$ with large cross section at ILC
- Either case: h will be produced with SM like cross section in $e^{+} e^{-} \rightarrow h Z$ $\rightarrow h \rightarrow \tau \tau$ ideal channel to measure CP

Higgs decay into tau lepton pairs

- Consider Lagrangian: $\mathcal{L}_{Y}=-N\left(\cos \phi \bar{\tau} \tau+\sin \phi \bar{\tau} i \gamma_{5} \tau\right) h$
- Higgs decays via $h \rightarrow \bar{\tau} \tau$, where the $\bar{\tau} \tau$ pair has

$$
P=(-1)^{L+1} \text { and } C=(-1)^{L+S}
$$

$$
\begin{aligned}
& \text { if } \tau \bar{\tau} \text { is in }{ }^{1} S_{0} \text { state : } \\
& \quad \rightarrow J^{P C}=0^{-+} \\
& \quad \rightarrow A^{0} \\
& \quad \rightarrow\left\langle s_{\tau^{-}} \cdot s_{\tau^{+}}\right\rangle=-\frac{3}{4} \\
& \quad \rightarrow \phi=\frac{\pi}{2}
\end{aligned}
$$

- if $\tau \bar{\tau}$ is in ${ }^{3} P_{0}$ state :

$$
\begin{aligned}
& \rightarrow J^{P C}=0^{++} \\
& \rightarrow H^{0}, h^{0} \\
& \rightarrow\left\langle s_{\tau^{-}} \cdot s_{\tau^{+}}\right\rangle=\frac{1}{4} \\
& \rightarrow \phi=0
\end{aligned}
$$

Higgs decay into tau lepton pairs

ㅁ Consider $\tau^{-} \rightarrow \pi^{-}+\nu_{\tau}$:
Higgs decay probability can be written as (Barger et al. '79)
$\Gamma\left(H, A \rightarrow \tau^{-} \tau^{+}\right) \sim 1-s_{z}^{\tau-} s_{z}^{\tau+} \pm s_{T}^{\tau^{-}} s_{T}^{\tau^{+}}$

- Pion is preferably emitted in the direction of the tau-Spin in the tau rest frame

ㅁ φ is sensitive to $\tau \tau$ spin correlation

Higgs decay into tau lepton pairs

ㅁ $\frac{1}{\Gamma} \frac{d \Gamma\left(h \rightarrow \pi^{+} \pi^{-}+2 \nu\right)}{d \varphi^{*}}=\frac{1}{2 \pi}\left[1-\frac{\pi^{2}}{16} \cos \left(\varphi^{*}-2 \phi\right)\right]$

ㅁ $\varphi^{*}=\varphi^{+}-\varphi^{-}$
with $\varphi^{ \pm}$the azimuthal angles of the $\pi^{ \pm}$defined in their respective $\tau^{ \pm}$rest frames

- Define Asymmetry:
$A=\frac{\sigma\left(\cos \varphi^{*}<0\right)-\sigma\left(\cos \varphi^{*}>0\right)}{\sigma}$
E.g. $A\left(h^{0} \rightarrow \pi^{+} \pi^{-}+2 \nu\right)=40 \%$

Introduction

- CP quantum numbers and possible CP violation of neutral Higgs bosons can be measured in a variety of Higgs decays or Higgs production processes, (e.g. hep-ph/0608079)
- $e^{+} e^{-} \rightarrow Z \Phi \rightarrow Z+\tau \bar{\tau}$ and $\tau \rightarrow$ hadrons
- $e^{+} e^{-} \rightarrow Z \Phi \rightarrow Z+\tau \bar{\tau}$ and $\tau \rightarrow \rho+\nu$
- $e^{+} e^{-} \rightarrow Z \Phi \rightarrow Z+\tau \bar{\tau}$ and $\tau \rightarrow$ all
(Reinhard, Videau, 2009)
uses 30\% of events
(Desch, Was, Worek hep-ph/0307331) uses 6.5% of events
(S.B., Bernreuther, Spiesberger, arXiv:1208.1507)

$H \rightarrow \tau \tau$: Reinhard, Videau, talk at Geneve '10

Polarization: $P\left(e^{-}, e^{+}\right)=(0.8,0.3)$
$E_{C M}=230 \mathrm{GeV}, m_{h}=120 \mathrm{GeV}$
$\operatorname{Br}(h \rightarrow \tau \bar{\tau})=0.08 \%$
$\sigma\left(e^{-} e^{+} \rightarrow Z h\right)=306.8 \mathrm{fb}$
$\operatorname{Br}(Z \rightarrow e e, \mu \mu, u \bar{u}, d \bar{d}, s \bar{s})=0.503$

decay mode included	$B R[\%]$
$\tau^{-} \rightarrow \pi^{-}$	11
$\tau^{-} \rightarrow \rho^{-} \rightarrow \pi^{-} \pi^{0}$	25.5
$\tau^{-} \rightarrow a_{1}^{-} \rightarrow \pi^{-} 2 \pi^{0}$	9.3
$\tau^{-} \rightarrow a_{1}^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}$	9

$\rightarrow B r^{2}(\tau \rightarrow$ hadrons $)=0.3$

- Included $Z Z$ background, beamstrahlung full simulation
- Reconstruction of the τ rest frame, determination of the polarimetric vector

546 Events

$$
A=25 \%
$$

$\rightarrow \Delta \phi=4.5^{\circ}$

Result:
ϕ can be measured using $300 \mathrm{fb}^{-1}$ with a precision of $\Delta \phi=5^{\circ}$

$H \rightarrow \tau \tau$: Desch, Was, Worek, hep-ph/0307331

Polarization: $P_{e^{-}}=0, P_{e^{+}}=0$
$E_{C M}=350 \mathrm{GeV}, m_{h}=120 \mathrm{GeV}$
$Z \rightarrow \mu \mu, q \bar{q} ; \mathcal{L}=1 a b^{-1}$
$\sigma(Z h) \cdot B r_{Z} \cdot B r_{h \rightarrow \tau \bar{\tau}} \cdot B r_{\tau \rightarrow \rho}^{2}=0.79 \mathrm{fb}$

- No $Z Z$ background
- Bremsstrahlung included
- SIMDET simulation
- φ^{*} defined in $\rho \rho$-ZMF
- Reconstruction of τ rest frames only to perform cuts on pion energies

decay mode included	$B R[\%]$
$\tau^{-} \rightarrow \rho^{-} \rightarrow \pi^{-} \pi^{0}$	25.5

$\rightarrow \operatorname{Br}^{2}\left(\tau \rightarrow \rho+\nu_{\tau}\right)=0.065$

$H \rightarrow \tau \tau$: S.B., Bernreuther, Spiesberger '12

- φ^{*} is defined without reconstructing the τ rest frames
- Use normalized impact parameter vectors \hat{n}_{-}, \hat{n}_{+}
- Boost $\hat{n}_{ \pm}$into $\pi^{-} \pi^{+}-\mathrm{ZMF}$ $\left(n^{\mu} n_{\mu}=-1\right)$:

ㅁ $\varphi^{*} \sim \operatorname{acos}\left(\hat{n}_{-\perp}^{*} \cdot \hat{n}_{+\perp}^{*}\right)$

- Measurement of PV necessary $\left(\right.$ from $\left.Z \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, q \bar{q}\right)$

$H \rightarrow \tau \tau$: S.B., Bernreuther, Spiesberger '12

- Differential decay width: $\frac{\mathrm{d} \Gamma(\tau(k, s) \rightarrow i(q)+X)}{\Gamma /(4 \pi) d E_{i} d \Omega_{i}}=n\left(E_{i}\right)\left(1+b\left(E_{i}\right) \hat{s} \cdot \hat{q}\right)$
- Branching ratios:

decay mode	$B R_{P D G}[\%]$
$\tau^{-} \rightarrow \pi^{-}$	11
$\tau^{-} \rightarrow \rho^{-} \rightarrow \pi^{-} \pi^{0}$	25.5
$\tau^{-} \rightarrow a_{1}^{-} \rightarrow \pi^{-} 2 \pi^{0}$	9.3
$\tau^{-} \rightarrow a_{1}^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}$	9
$\tau^{-} \rightarrow e^{-}, \mu^{-}$	35.2

- Energy variable in 3-body decay
modes: $\tau^{ \pm} \rightarrow l^{ \pm}+X$ and
$\tau^{ \pm} \rightarrow \rho^{ \pm} / a_{1}^{ \pm}+X \rightarrow \pi^{ \pm}+X$
- $b(E)$ determines spin analyzer quality

- $n(E)$ determines relative contribution to σ

$H \rightarrow \tau \tau$: S.B., Bernreuther, Spiesberger '12

$P\left(e^{-}, e^{+}\right)=(0.8,0.3)$
$E_{C M}=250 \mathrm{GeV}$
$m_{h}=126 \mathrm{GeV}$
$\sigma_{Z h}=303 \mathrm{fb}$
$B r_{h \rightarrow \tau \bar{\tau}}=0.062$

$\tau \tau$ decay	$\sigma_{Z h} B r_{Z} B r_{h \rightarrow \tau \cdot} \cdot B r_{\tau} B r_{\tau}$
had-had	2.8 fb
had-lep	3.6 fb
lep-lep	1.2 fb

$B r_{Z \rightarrow e e, \mu \mu, u \bar{u}, d \bar{d}, s \bar{s})}=0.503$

Preliminary:

Statistical uncertainty (no background/detector effects included):
$\tau \tau \rightarrow\left(\pi, \rho, a_{1}^{3 \pi^{ \pm}}\right)+\left(\pi, \rho, a_{1}^{3 \pi^{ \pm}}\right)$(cuts in τ-rest frames applied):
$A=29.7 \%$ leading with 472 Events $\left(\varepsilon=0.5, \mathcal{L}=500 \mathrm{fb}^{-1}\right)$ to $\Delta \phi \approx 4.1^{\circ}$
$\tau \tau \rightarrow l e p+\left(\pi, \rho, a_{1}^{3 \pi^{ \pm}}\right)(h$ rest frame cuts applied):
$A=12.2 \%$ leading with 565 Events $\left(\varepsilon=0.6, \mathcal{L}=500 \mathrm{fb}^{-1}\right.$) to $\Delta \phi \approx 9.5^{\circ}$
$\tau \tau \rightarrow$ lep + lep: $\left(E_{l}^{h-r e s t ~} \geq 15 \mathrm{GeV}\right):$
$A=7.6 \%$ leading with 187 Events $\left(\varepsilon=0.8, \mathcal{L}=500 \mathrm{fb}^{-1}\right)$ to $\Delta \phi \approx 32^{\circ}$

Concluding Remarks

- Determination of the CP quantum numbers of neutral, Spin-0 resonances is possible in the tau decay channel, where all dominant tau-decay channels can be included

ㅁ A precision of $\Delta \phi=5^{\circ}$ seems achievable with $300-500 \mathrm{fb}^{-1}$

- Precision is statistically limited \rightarrow can be estimated for higher luminosities and collider energies based on the number of events available

