Determination of the CP parity of Higgs bosons in their tau decay channels at the ILC

Stefan Berge Johannes Gutenberg-University Mainz

Introduction

- $\hfill\square$ LHC: At least one scalar boson, probably Spin-0, with $m_h=126~{\rm GeV}$
- **□** If it is one boson: h^0 , H^0 (*CP*-even), A^0 (*CP*-odd) or h_1 (*CP*-mixed) state
 - It is not a pure CP-odd state A^0 ($h \rightarrow ZZ$: CMS-PAS-HIG-13-002,

ATLAS-CONF-2013-013; and 1211.1980)

- No large an amolous A^0ZZ coupling (because of $h \to ZZ$)
- \rightarrow large cross section in $e^+e^- \rightarrow hZ$
- □ If there is more than one Higgs boson (2HDM), degenerated in mass
 - E.g. A^0 and $H^0: \to H^0$ is produced in $ee \to ZH^0$ with large cross section at ILC
 - E.g. h^0 and H^0 : or several CPmix: $\rightarrow ee \rightarrow Zh$ with large cross section at ILC
- Either case: h will be produced with SM like cross section in $e^+e^- \rightarrow hZ$ $\rightarrow h \rightarrow \tau \tau$ ideal channel to measure CP

Higgs decay into tau lepton pairs

• Consider Lagrangian: $\mathcal{L}_Y = -N (\cos \phi \, \bar{\tau} \tau + \sin \phi \, \bar{\tau} i \gamma_5 \tau) h$ • Higgs decays via $h \to \bar{\tau} \tau$, where the $\bar{\tau} \tau$ pair has $P = (-1)^{L+1}$ and $C = (-1)^{L+S}$

$$\begin{array}{c} \text{if } \tau \overline{\tau} \text{ is in } {}^{1}S_{0} \text{ state :} \\ \rightarrow J^{PC} = 0^{-+} \\ \rightarrow A^{0} \\ \rightarrow \langle s_{\tau^{-}} \cdot s_{\tau^{+}} \rangle = -\frac{3}{4} \\ \rightarrow \phi = \frac{\pi}{2} \end{array}$$

$$\begin{array}{c} \text{if } \tau \overline{\tau} \text{ is in } {}^{3}P_{0} \text{ state} \\ \rightarrow J^{PC} = 0^{++} \\ \rightarrow J^{PC} = 0^{++} \\ \rightarrow H^{0}, h^{0} \\ \rightarrow \langle s_{\tau^{-}} \cdot s_{\tau^{+}} \rangle = \frac{1}{4} \\ \rightarrow \phi = 0 \end{array}$$

Higgs decay into tau lepton pairs

Consider
$$\tau^- \to \pi^- + \nu_{\tau}$$
:
Higgs decay probability can be written as (Barger et al. '79)
 $\Gamma(H, A \to \tau^- \tau^+) \sim 1 - s_z^{\tau-} s_z^{\tau+} \pm s_T^{\tau-} s_T^{\tau+}$

 Pion is preferably emitted in the direction of the tau-Spin in the tau rest frame

Higgs decay into tau lepton pairs

$$\Box \quad \frac{1}{\Gamma} \frac{d\Gamma(h \to \pi^+ \pi^- + 2\nu)}{d\varphi^*} = \frac{1}{2\pi} \left[1 - \frac{\pi^2}{16} \cos(\varphi^* - 2\phi) \right]$$

$$\varphi^* = \varphi^+ - \varphi^-$$

with φ^{\pm} the azimuthal angles of the π^{\pm} defined in their respective τ^{\pm} rest frames

Define Asymmetry:

$$A = \frac{\sigma(\cos\varphi^* < 0) - \sigma(\cos\varphi^* > 0)}{\sigma}$$

E.g. $A(h^0 \to \pi^+\pi^- + 2\nu) = 40\%$

PRISMA Stefan Berge Institut für Physik

 CP quantum numbers and possible CP violation of neutral Higgs bosons can be measured in a variety of Higgs decays or Higgs production processes, (e.g. hep-ph/0608079)

$$e^+e^- \to Z\Phi \to Z + \tau\bar{\tau}$$
 and $\tau \to \text{hadrons}$

 $\bullet e^+e^- \to Z\Phi \to Z + \tau\bar{\tau}$ and $\tau \to \rho + \nu$

 $\bullet e^+e^- \to Z\Phi \to Z + \tau\bar{\tau}$ and $\tau \to all$

(Reinhard, Videau, 2009) uses 30% of events

(Desch, Was, Worek hep-ph/0307331) uses 6.5% of events

(S.B., Bernreuther, Spiesberger, arXiv:1208.1507)

H ightarrow au au: Reinhard, Videau, talk at Geneve '10

Polarization: $P(e^-, e^+) = (0.8, 0.3)$ $E_{CM} = 230 \text{ GeV}, m_h = 120 \text{ GeV}$ $Br(h \rightarrow \tau \bar{\tau}) = 0.08\%$ $\sigma(e^-e^+ \rightarrow Zh) = 306.8 \text{ fb}$ $Br(Z \rightarrow ee, \mu\mu, u\bar{u}, d\bar{d}, s\bar{s}) = 0.503$

- Included ZZ background, beamstrahlung full simulation
- Reconstruction of the τ rest frame, determination of the polarimetric vector

546 Events A = 25% $\rightarrow \Delta \phi = 4.5^{\circ}$

decay mode included	BR [%]
$\tau^- \to \pi^-$	11
$\tau^- \to \rho^- \to \pi^- \pi^0$	25.5
$\tau^- \to a_1^- \to \pi^- 2\pi^0$	9.3
$\tau^- \to a_1^- \to \pi^- \pi^+ \pi^-$	9

 $\rightarrow Br^2(\tau \rightarrow \text{hadrons}) = 0.3$

$H \rightarrow \tau \tau$: Desch, Was, Worek, hep-ph/0307331

Polarization:
$$P_{e^-} = 0, P_{e^+} = 0$$

 $E_{CM} = 350 \text{ GeV}, m_h = 120 \text{ GeV}$
 $Z \to \mu \mu, q\bar{q}; \mathcal{L} = 1ab^{-1}$
 $\sigma(Zh) \cdot Br_Z \cdot Br_{h \to \tau\bar{\tau}} \cdot Br_{\tau \to \rho}^2 = 0.79 fb$

decay mode included	$BR \ [\%]$
$\tau^- \to \rho^- \to \pi^- \pi^0$	25.5

$$\rightarrow Br^2(\tau \rightarrow \rho + \nu_{\tau}) = 0.065$$

- No ZZ background
- Bremsstrahlung included
- SIMDET simulation
- φ^* defined in $\rho\rho\text{-}\mathrm{ZMF}$
- Reconstruction of τ rest frames only to perform cuts on pion energies

 $\hfill\square \ensuremath{\varphi^*}$ is defined without reconstructing the τ rest frames

- Use normalized impact parameter vectors \hat{n}_{-}, \hat{n}_{+}
- Boost \hat{n}_{\pm} into $\pi^{-}\pi^{+}$ -ZMF $(n^{\mu}n_{\mu} = -1)$:
- $\circ \varphi^* \sim \operatorname{acos}(\hat{n}_{-\perp}^* \cdot \hat{n}_{+\perp}^*)$
- Measurement of PV necessary (from $Z \rightarrow e^+e^-, \mu^+\mu^-, q\bar{q}$)

$H \rightarrow \tau \tau$: S.B., Bernreuther, Spiesberger '12

- **D** Differential decay width: $\frac{d\Gamma(\tau(k,s) \to i(q) + X)}{\Gamma/(4\pi) \ dE_i d\Omega_i} = n\left(E_i\right)\left(1 + b\left(E_i\right) \ \hat{s} \cdot \hat{q}\right)$
- **D** Branching ratios:

decay mode	BR_{PDG} [%]
$\tau^- \to \pi^-$	11
$\tau^- \to \rho^- \to \pi^- \pi^0$	25.5
$\tau^- \to a_1^- \to \pi^- 2\pi^0$	9.3
$\tau^- \to a_1^- \to \pi^- \pi^+ \pi^-$	9
$\tau^- ightarrow e^-, \mu^-$	35.2

- Energy variable in 3-body decay modes: $\tau^{\pm} \rightarrow l^{\pm} + X$ and $\tau^{\pm} \rightarrow \rho^{\pm}/a_1^{\pm} + X \rightarrow \pi^{\pm} + X$
- **\Box** b(E) determines spin analyzer quality
- $\hfill\square$ n(E) determines relative contribution to σ

$H \rightarrow \tau \tau$: S.B., Bernreuther, Spiesberger '12

 $P(e^{-}, e^{+}) = (0.8, 0.3)$ $E_{CM} = 250 \text{ GeV}$ $m_{h} = 126 \text{ GeV}$ $\sigma_{Zh} = 303 \text{ fb}$ $Br_{h \to \tau\bar{\tau}} = 0.062$ $Br_{Z \to ee, \mu\mu, u\bar{u}, d\bar{d}, s\bar{s})} = 0.503$

au au decay	$\sigma_{Zh} Br_Z Br_{h \to \tau\bar{\tau}} \cdot Br_\tau Br_{\bar{\tau}}$
had-had	2.8 fb
had-lep	3.6 fb
lep-lep	1.2 fb

Preliminary:

Statistical uncertainty (no background/detector effects included):

 $\tau \tau \to (\pi, \rho, a_1^{3\pi^{\pm}}) + (\pi, \rho, a_1^{3\pi^{\pm}})$ (cuts in τ -rest frames applied): A = 29.7% leading with 472 Events ($\varepsilon = 0.5, \mathcal{L} = 500 \, fb^{-1}$) to $\Delta \phi \approx 4.1^{\circ}$

 $\tau \tau \rightarrow lep + (\pi, \rho, a_1^{3\pi^{\pm}})$ (*h* rest frame cuts applied): A = 12.2% leading with 565 Events ($\varepsilon = 0.6, \mathcal{L} = 500 \, fb^{-1}$) to $\Delta \phi \approx 9.5^{\circ}$ $\tau \tau \rightarrow lep + lep$: ($E_l^{h-rest} \ge 15 \text{ GeV}$):

A = 7.6% leading with 187 Events ($\varepsilon = 0.8$, $\mathcal{L} = 500 \, fb^{-1}$) to $\Delta \phi \approx 32^{\circ}$

- Determination of the CP quantum numbers of neutral, Spin-0 resonances is possible in the tau decay channel, where all dominant tau-decay channels can be included
- A precision of $\Delta \phi = 5^{\circ}$ seems achievable with $300 500 \, fb^{-1}$
- □ Precision is statistically limited → can be estimated for higher luminosities and collider energies based on the number of events available

