Higgs Couplings and New Physics Physics Requirements, Collider Accuracy and Systematic Uncertainties

Marco Battaglia

in collaboration with M. Spira, M. Mullheitner, R. Contino, K. Desch, A Arbey, F Mahmoudi

Snowmass 2013 Community Summer Study Energy Frontier Workshop, U. of Washington – Seattle – June 30th, 2013

Models

pMSSM:

19 parameters MSSM, test sensitivity to M_A and sparticle contributions to loops

pMSSM with light neutralino:

Scenarios compatible with light WIMPS in DM direct searches

Study shifts in h couplings, Brs and total width through high statistics 19 parameter Scans (SoftSUSY + HDECAY 5 + SuperIso + Micromegas)

SILH:

Generic SILH models with multiparameter scans and benchmark models (MCHM4 and MCHM5) (eHDECAY)

MSSM: Higgs Width, Branching Fractions, M_A and SUSY

MSSM: Higgs Width, Branching Fractions, M_A and SUSY

Observable	Gaussian RMS
Γ(h)	0.067
BR(WW)	0.075
BR(bb)	0.041
BR(cc)	0.072
ΒR(γγ)	0.070

MSSM: Higgs Invisible Decays

Scenarios with light neutralino compatible with direct detection events reported by CDMS and other experiments exist in the MSSM;

Light neutralinos put emphasis on invisible Higgs decays;

In the specific scemario identified so far (light, degenerate sbottom) invisible decay branching fractions are < 10% which makes them interesting only for e+e- colliders.

SILH: Higgs Branching Fractions and Total Width

MCHM 4 = Agashe Contino, Pomarol, NP B 719 (2005) 165 MCHM 5 = Contino, Da Rold, Pomarol, PRD 75 (2007) 055014

Systematic Uncertainties: Parametric and Theoretical

	$\Delta \mathrm{m}_{_\mathrm{b}}$	$\Delta \mathrm{m}_{_{\mathrm{c}}}$	$\Delta m_{_{ m t}}$	$\Deltalpha_{_{ m S}}$	TH
ΔBR(bb)/BR	0.012	0.002	0.0001	0.004	0.007
ΔBR(cc)/BR	0.019	0.060	0.001	0.015	0.018
$\Delta \mathrm{BR}(\tau\tau)/\mathrm{BR}$	0.018	0.002	0.001	0.006	0.016
ΔBR(WW)/BR	0.002	0.002	0.0001	0.006	0.011

(see also S. Heinemeyer talk at this workshop)

Droll and Logan, PRD76 (2007)

Denner et al. (LHC Higgs XSec WG), EPJC 71 (2011)

MSSM: M_A Sensitivity

	pMSSM M _A Exclusion (95%C.L.)	
LHC	380 GeV	
ILC 350	530 GeV	
ILC 500	700 GeV	
ILC 500 + Systs	550 GeV	

MSSM: M_A Sensitivity

Arbey, MB, Mahmoudi, arXiv:1303.7450

SILH: *ξ* Sensitivity

95% CL ξ Limit	MCHM4	MCHM5
LHC	-	
ILC 350	0.29	0.056
ILC 500	0.18	0.046
ILC 500 + Systs	0.22	0.055

Conclusions

Ongoing study of sensitivity to BSM physics through precision determination of Higgs properties based on various models;

BSM effects may be of order of few percent and determination of both branching fractions and total width essential to identify some models;

"Useful" experimental accuracy depends on BSM effects and parametric+theory systs;

Accuracy expected from ILC program at 0.25+0.35+0.5 TeV appears well matched to "useful" accuracy and provides indirect sensitivity up to and beyond LHC direct reach for BSM signals in the same models;

Further push in accuracy beyond ILC will not lead significant improvement in BSM sensitivity for scenarios considered so far, unless systematics are correspondingly reduced;

Plan to extend study to additional models and consider triple Higgs coupling.