QCD Working Group Report

Snowmass: Seattle Energy Frontier Workshop, June 30 2013

John Campbell

for the conveners: JC, K. Hatakeyama, J. Huston, F. Petriello

Overview

 Conclusions and much of the material presented here collated from a series of meetings over the course of 2012-13.

- Kick-off meeting (Fermilab, October 2012)
- One-day QCD meeting (Fermilab, January 2013)
- ◆ Energy Frontier meeting (BNL, April 2013)
- One-day QCD/computing meeting (Loopfest, May 2013)
- ★ Les Houches "Physics at TeV colliders" (June, 2013)

Themes

- ♦ Studies fall into four main themes:
 - Investigations of pdf knowledge and uncertainties.

 Exploration of phenomenology at (possible) future hadroncollider operating energies (14, 33, 100 TeV).

Uncertainties on Higgs+jet cross sections.

 Potential for improvements in the perturbative description, beyond NLO QCD and including NLO EW.

Current knowledge and uncertainties

- Central values and uncertainties for the three most widely-used pdf sets - CT10, MSTW08, NNPDF2.3 - generally agree.
- ◆ Still room for improvement, particularly in the gluon distribution.
- Potential for reducing the uncertainty in the cross section for Higgs production by gluon fusion.
- Differences mostly due to treatment of fixed-target DIS data.
- ◆ Collider-only fits agree better but have larger uncertainties (under investigation for MN).

NNPDF PDFs, Ratio to NNPDF2.3, $\alpha_s = 0.118$

Also ongoing: more efficient study of uncertainties ("meta-pdfs").

Likely improvements from LHC data

 Improved extractions of pdfs will be possible with the advent of suitable NNLO calculations of jet and top-pair differential distributions (~ 1 year).

gluon-only dijet production (Gehrmann de Ridder et al, 2013)

→ still need full (and fast) result for pdf extraction

top pairs at NNLO: will be better with rapidity and mass distributions

 Drell-Yan data also important at high mass, but requires full QCD. +EWK corrections; still hard to compete with HERA for quarks.

Luminosity uncertainties at 14TeV+beyond

Uncertainties for higher energies reasonable for small-moderate x.

Improvements from LHeC

◆ LHeC will allow precision measurement of pdfs over the complete kinematic range needed for 14 TeV and higher energies.

- LHeC also opens the possibility of a measurement of the strong coupling α_s with per mille accuracy.
 - → but requires simultaneous advances in theory

case	cut $[Q^2 (\text{GeV}^2)]$	α_S	uncertainty	relative precision (%)
HERA only (14p)	$Q^2 > 3.5$	0.11529	0.002238	1.94
HERA+jets (14p)	$Q^2 > 3.5$	0.12203	0.000995	0.82
LHeC only (14p)	$Q^2 > 3.5$	0.11680	0.000180	0.15
LHeC only (10p)	$Q^2 > 3.5$	0.11796	0.000199	0.17
LHeC only (14p)	$Q^2 > 20$.	0.11602	0.000292	0.25
LHeC+HERA (10p)	$Q^2 > 3.5$	0.11769	0.000132	0.11
LHeC+HERA (10p)	$Q^2 > 7.0$	0.11831	0.000238	0.20
LHeC+HERA (10p)	$Q^2 > 10$.	0.11839	0.000304	0.26

exp. uncertainty reduced by order of magnitude

Cross sections at higher energies

Most important cross sections are reasonably stable under NLO corrections at higher energies.

33 TeV

Process	μ_R^2, μ_F^2	σ_{LO} [pb]	$\sigma_{NLO}~[\mathrm{pb}]$	K-factor
$W^+ j \ (p_T^W > 200 \ { m GeV})$	$M_W^2 + p_T^{W^2}$	427	629	1.47
$W^- j \ (p_T^W > 200 \ { m GeV})$	$M_W^2 + p_T^{W^2}$	291	443	1.52
$Z^{0}j \ (p_{T}^{W} > 200 \ { m GeV})$	$M_Z^2 + p_T^{Z^2}$	312	460	1.41
$\gamma j~(p_T^{\gamma} > 100~{ m GeV})$	$p_T^{\gamma \; 2}$	2690	4030	1.47
$W^+ \gamma \ (p_T^{\gamma} > 100 \text{ GeV})$	$p_T^{\gamma \; 2}$	1.90	10.0	5.26
$W^{-}\gamma \ (p_{T}^{\gamma} > 100 \ {\rm GeV})$	$p_T^{\gamma \; 2}$	1.29	7.50	5.81
$Z^{0}\gamma \ (p_{T}^{\gamma} > 100 \ { m GeV})$	$p_T^{\gamma \; 2}$	3.66	7.88	2.15
$\gamma\gamma$ (both $p_T^{\gamma} > 100$ GeV)	$m_{\gamma\gamma}^2$	2.70	3.65	1.35
$\ell^+\ell^- \ (m_{\ell^+\ell^-} > 150 \text{ GeV})$	$m_{\ell^+\ell^-}^2$	20.9	23.6	1.13

- Some notable exceptions that are understood.
- Scaling of cuts on basic objects assumed (jets, photons).

Lessons from NLO

Phenomenon of "giant" K-factors well-known - see recent studies by Sapeta & Salam.

Caused by new gluon contributions and kinematic configurations.

- Exacerbated by scaling cuts with energy.
- Underlines importance of using latest tools (such as matched samples) where these effects are included.

Improved gg→H cross section

◆ Approximations to the N³LO gluon fusion Higgs cross section are now available and a full calculation may exist in a few years.

◆ Resumming both soft and BFKL logs leads to greater stability in the cross section, with a similar pattern observed at all energies.

Alternative approximation to N³LO

◆ Based on convolution of collinear splitting kernels with lowerorder partonic results, to get approximate N³LO; a step towards a full calculation.

Buehler and Lazopoulos (2013)

Other issues

◆ Typical boost cuts greatly restrict available phase space, affecting perturbative convergence and accuracy of predictions.

Grazzini et al

$$\sigma(NLO) \approx \sigma(LO) / 4$$

Resummation should help; studies underway and results may be available soon

 Also under study for MN: improvements in NLO+PS, investigation of importance of BFKL logs in Higgs+jet production at higher energies.

Higgs+jet uncertainties

 A great deal of theoretical work on resumming jet veto logarithms is underway and should lead to a new scheme for estimating uncertainties this year.

Work by different groups

0-jet resummation

- Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]
 - ▶ Use QCD NNLL resummation for p_T^H [Bozzi, Catani, Grazzini] plus necessary correction terms to go from p_T^H to p_T^{jet}
- Becher, Neubert, Rothen [1205.3806, + updating numerics]
 - Use SCET-II together with "collinear anomaly" treatment to exponentiate rapidity logarithms by hand
- Stewart, FT, Walsh, Zuberi [1206.4312, + to appear]
 - Use SCET-II together with rapidity renormalization group to resum rapidity logs

1-jet resummation

- Liu, Petriello [1210.1906, 1303.4405]
 - ightharpoonup Resummation for large $p_{T1}^{
 m jet} \sim m_H$ using SCET-II with rapidity RGE

F. Tackmann

Hope for some progress and studies at higher energies by MN

< ₽ >

Moving beyond NLO QCD

◆ A list of the highest-priority higher-order QCD and EW calculations has been compiled.

Process	known	desired	motivation
Н	d\sigma @ NNLO QCD d\sigma @ NLO EW finite quark mass effects @ NLO	d\sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO	H branching ratios and couplings
H+j	d\sigma @ NNLO QCD (g only) d\sigma @ NLO EW	d\sigma @ NNLO QCD + NLO EW finite quark mass effects @ NLO	H p_T
H+2j	\sigma_tot(VBF) @ NNLO(DIS) QCD d\sigma(gg) @ NLO QCD d\sigma(VBF) @ NLO EW	d\sigma @ NNLO QCD + NLO EW	H couplings
H+V	d\sigma(V decays) @ NNLO QCD d\sigma @ NLO EW	with H→bb @ same accuracy	H couplings
t\bar tH	d\sigma(stable tops) @ NLO QCD	d\sigma(NWA top decays) @ NLO QCD + NLO EW	top Yukawa coupling
НН	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Les Houches workshop 2013

Higgs observables here; similar lists for processes involving jets, heavy quarks and vector bosons.

- → High priority for:
 - ◆ pdfs
 - → H bkgs
 - ◆ EW structure, TGCs, QGCs
- Key issue:
 whether QCD
 and EW
 corrections
 factorize or not.

Process	known	desired	motivation
V	d\sigma(lept. V decay) @ NNLO QCD + EW	d\sigma(lept. V decay) @ NNNLO QCD + NLO EW MC@NNLO	precision EW, PDFs
V+j	d\sigma(lept. V decay) @ NLO QCD + EW	d\sigma(lept. V decay) @ NNLO QCD + NLO EW	Z+j for gluon PDF W+c for strange PDF
V+jj	d\sigma(lept. V decay) @ NLO QCD	d\sigma(lept. V decay) @ NNLO QCD + NLO EW	study of systematics of H+jj final state
VV '	d\sigma(V decays) @ NLO QCD d\sigma(stable V) @ NLO EW	d\sigma(V decays) @ NNLO QCD + NLO EW	bkg H → VV TGCs
$gg \rightarrow VV$	d\sigma(V decays) @ LO	d\sigma(V decays) @ NLO QCD	bkg to H→VV
V\gamma	d\sigma(V decay) @ NLO QCD d\sigma(PA, V decay) @ NLO EW	d\sigma(V decay) @ NNLO QCD + NLO EW	TGCs
Vb\bar b	d\sigma(lept. V decay) @ NLO QCD massive b	d\sigma(lept. V decay) @ NNLO QCD massless b	bgk to VH(→bb)
VV'\gamma	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs
VV"V"	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs, EWSB
VV'+1jet	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	bkg to H, BSM searches
VV'+2j	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs, EWSB
\gamma \gamma	d\sigma @ NNLO QCD		bkg to H→\gamma \gamma

Factorization of QCD and EW corrections?

- ◆ Strong evidence (but not proof) that corrections factorize in gg→H; understood to be due to large threshold corrections.
- Further evidence in W production.

comparison of relative EW corrections in W production (magenta) and W+jet (blue)

corrections almost identical within 20 GeV of resonance → factorization

these two examples may be special, "simple" processes

EW Sudakov logarithms

 In cases where full EW corrections are not known, can appeal to dominance of Sudakov logs when s and |t| large; the effect of these logs can now be accounted for in ALPGEN.

◆ Effect of these large corrections must be taken into account at higher energies.

Photon pdfs

 New pdf sets including photons are being produced by NNPDF and CT for more complete description and for calculating important photon-induced contributions.

Photon pdf: NNPDF vs MRST

Important differences found in comparison with (old) MRST set.

smaller at low *x* where LHCb data now constrains NNPDF

agreement at large *x* (where impact is largest for WW example)

Between now and MN

- Many studies have yet come to fruition and we hope they will do so over the next few weeks.
- We will hear more about some of them over the next couple of days:
 - Monday afternoon (more detailed update, ongoing studies)
 - Tuesday morning (joint with EW: α_s measurements at e⁺e⁻ colliders, Sudakov logs)
 - ◆ Tuesday afternoon (discussion and outlook)