

Warped/Composite Higgs and Flavor

Kaustubh Agashe, Martin Bauer, Florian Goertz, Luca Vecchi, LianTao Wang

RS MODELS

UV brane/ Elementary

```
SU(3)_C \times SU(2)_L \times U(1)_Y
IR brane/

Composite

<math display="block">SU(3)_C \times U(1)_{EM}
Higgs,

Yukawas
```

RS MODELS

UV brane/ Elementary

$$F(c) \sim \begin{cases} \left(\frac{TeV}{M_{\rm Pl}}\right)^{-\left(\frac{1}{2}+c\right)}, & c < -\frac{1}{2}\\\\ \sqrt{1+2c}, & c > -\frac{1}{2} \end{cases}$$

RS MODELS

UV brane/ Elementary

The same parameters which generate the masses of the light quarks suppress contributions to FCNCs: RS-GIM.

$$m_d \sim \frac{v}{\sqrt{2}} F(c_{Q_1}) Y_d^{(5D)} F(c_d)$$
$$\sim \frac{v}{\sqrt{2}} Y_d^{\text{eff}}$$

 $\frac{g_s^2 L}{M_{\text{KK}}^2} F(c_{Q_1}) F(c_d) F(c_{Q_2}) F(c_s)$ $a^2 2m_d m_c$

$$\sim \frac{g_s^2}{M_{\rm KK}^2} L \frac{2m_d m_s}{\left(v Y_d^{(5D)}\right)^2}$$

What parameters describe (the flavor sector of) a composite/warped Higgs model?

Parameters

- KK scale $M_{\rm KK}$
- 9 Quark localizations

 $c_{Q_1}, c_{Q_2}, c_{Q_3}, c_d, c_s, c_b, c_u, c_c, c_t$

• 2 Yukawa matrices Y_u , Y_d

What parameters describe (the flavor sector of) a composite/warped Higgs model?

Parameters

- KK scale $M_{\rm KK}$
- 9 Quark localizations $c_{Q_1}, c_{Q_2}, c_{Q_3}, c_d, c_s, c_b, c_u, c_c, c_t$
- 2 Yukawa matrices Y_u , Y_d

 8 are fixed by the six quark masses and two of the Wolfenstein parameters

No Flavor structure in the Yukawas!

What parameters describe (the flavor sector of) a composite/warped Higgs model?

Parameters

- KK scale M_{KK}
- 9 Quark localizations $c_{Q_1}, c_{Q_2}, c_{Q_3}, c_d, c_s, c_b, c_u, c_c, c_t$
- 2 Yukawa matrices Y_u , Y_d

_ 8 are fixed by the six quark masses and two of the Wolfenstein parameters

No Flavor structure in the Yukawas! Quark Masses and mixing angles relate the quark profiles:

$$\begin{split} m_u &\sim Y_* \left| F(c_{Q_1}) \right| \left| F(c_u) \right| & m_d \sim Y_* \left| F(c_{Q_1}) \right| \left| F(c_d) \right| \\ m_c &\sim Y_* \left| F(c_{Q_2}) \right| \left| F(c_c) \right| & m_s \sim Y_* \left| F(c_{Q_2}) \right| \left| F(c_s) \right| \\ m_t &\sim Y_* \left| F(c_{Q_3}) \right| \left| F(c_t) \right| & m_b \sim Y_* \left| F(c_{Q_3}) \right| \left| F(c_b) \right| \end{split}$$

$$\lambda \sim Y_* \, \frac{|F(c_{Q_1})|}{|F(c_{Q_2})|} \qquad A \sim Y_* \, \frac{1}{\lambda^2} \, \frac{|F(c_{Q_2})|}{|F(c_{Q_3})|}$$

Moving the right handed top towards the IR will push the localization of the left-handed 3rd generation profile into the UV.

The Wolfenstein Parameters force 1st and 2nd generation left-handed profiles to shift towards the UV as well.

All right-handed profiles shift towards the IR due to the mass relations.

The localization of the right-handed top quark controls whether FCNCs are dominated by right-handed or left-handed currents.

 $c_t \rightarrow IR \Rightarrow$ large contributions to right-handed currents $c_t \rightarrow UV \Rightarrow$ large contributions to left-handed currents

A custodial symmetry protects electroweak precision observables and the Zb_Lb_L vertex from sizable corrections.

Left-handed currents involving down quarks are therefore small due to a protection from the gauge sector.

Flavor experiments will have good sensitivity for "IR top models"

OBSERVABLES

Current Bounds: $B(K^+ \to \pi^+ \bar{\nu}\nu) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ $B(K^0 \to \pi^0 \bar{\nu}\nu) < 3.8 \times 10^{-10}$

Gray area : 90% of the models with $F(c_t) > 2.2$ Orange area: 90% of the models with $F(c_t) < 0.5$ Dijet searches have complementary sensitivity, because the top localization controls the branching fraction of the new resonance into light flavors.

 $F(c_t) > 2.2$ $F(c_t) < 0.5$

- This complementarity is expected to be even more pronounced in models with flavor symmetries.
- The flavor off-diagonal decay $g_{KK} \rightarrow tc$ can distinguish between flavor symmetric and anarchic model and will be part of the collider study for Snowmass

LEPTONS

• The strongest bound is from $\mu \to e\gamma$. In models of partial compositeness the relevant operator scales as:

$$c_{L,R} \frac{Y^2}{16\pi^2} \frac{\sqrt{m_\mu m_e}}{m_\rho^2} \overline{\mu} \sigma^{\mu\nu} e_{L,R} \ eF_{\mu\nu}$$

with $c_{L,R} = O(1)$ (here Y = 5D Yukawa, $m_{\rho} = KK$ mass). The current 90% CL bound is $\mathcal{B}(\mu \to e\gamma) \le 5.7 \times 10^{-13}$ (MEG), and reads

$$\frac{m_{\rho}}{Y} \gtrsim 18\sqrt{|c_L|^2 + |c_R|^2} \text{ TeV}.$$

Bound on the NP scale gets weaker for smaller Y

LEPTONS

• $\mu \rightarrow e$ conversion is dominantly mediated by:

$$\frac{c}{Yf^2} \frac{\sqrt{m_\mu m_e}}{v} \,\overline{e} \gamma^\mu \mu \,H^\dagger i \overleftrightarrow{D}_\mu H,$$

with c=O(1) and $f=m_\rho/g_\rho,$ $g_\rho=$ KK coupling. Most stringent bound from conversion in gold nuclei $R_{\mu e}^{\rm Au}\leq 7\times 10^{-13}$ (SINDRUM II)

$$f\sqrt{Y} \gtrsim 2.0\sqrt{|c|}$$
 TeV.

Bound on the NP scale gets stronger for smaller Y

LEPTONS

• electron EDM:

$$\frac{d_e}{e} = \operatorname{Im}(c_e) \frac{Y^2}{16\pi^2} \frac{m_e}{m_{\rho}^2}$$

with $c_e=O(1).$ Current bound $^1~d_e\leq (6.9\pm7.4)\times10^{-28}e~{\rm cm}$ gives

$$\frac{m_{\rho}}{Y} \gtrsim (7 - 36)\sqrt{|\mathrm{Im}(c_e)|} \mathrm{TeV}.$$

Probe of CPV even in models where FV is suppressed

¹Regan et al. (2002)

SUMMARY OF THE MAIN CONSTRAINTS ON ANARCHIC SCENARIOS

Keren-Zur et al.

Operator	$ { m Re}(c) \qquad { m Im}(c) $	Observable
$c rac{Y^2}{16\pi^2} rac{m_e}{m_ ho^2} \ \overline{e} \sigma^{\mu u} e F_{\mu u} e_{L,R}$	$-$ 1.1 $\left(\frac{m_{\rho}/Y}{10 \text{ TeV}}\right)^2$	electron EDM
$c rac{Y^2}{16\pi^2} rac{\sqrt{m_e m_\mu}}{m_ ho^2} \ \overline{\mu} \sigma^{\mu u} e F_{\mu u} e_{L,R}$	$0.31 \left(rac{m_ ho/Y}{10 { m TeV}} ight)^2$	$\mu ightarrow e \gamma$
"	$3.7 \left(\frac{m_{ ho}/Y}{10 \text{ TeV}}\right)^2$	$\mu \to e e^+ e^-$
${c\over {Yf^2}} {\sqrt{m_e m_\mu}\over v} \ ar e \gamma^\mu \mu_{L,R} H^\dagger i \overleftrightarrow D_\mu H$	$0.25 \left(\frac{\sqrt{Y}f}{1 \text{ TeV}}\right)^2$	$\mu(Au) \to e(Au)$
"	$0.38 \left(\frac{\sqrt{Y}f}{1 \text{ TeV}}\right)^2$	$\mu \to e e^+ e^-$

complementarity of the bounds:

- $\mu \rightarrow e$ with different dependence on Y
- d_e probes CPV rather than $\ell_i \to \ell_j$

ANALYSIS OF ANARCHIC RS MODEL

(Agashe et al.)

- non-hierarchical neutrino masses can be obtained by cutoff-suppressed operators (i.e., operators on the UV brane) either as Dirac or Majorana. The UV cutoff must be $\leq O(\Lambda_{\rm see-saw})$.
- hierarchical masses for the charged leptons can be obtained as in the quark sector by partial compositeness (i.e., wave function localization in 5D): the Majorana/Dirac nature of neutrinos does not impact the physics of charged leptons.

ANARCHIC LEPTON SCENARIOS AT THE INTENSITY FRONTIER

- $\underline{\mu \to e \text{ transitions:}}$ $\mu \to e\gamma, \mu(Au) \to e(Au), \text{ and } \mu \to e\overline{e}e$ currently require $m_{\rho} \gtrsim O(20) \text{ TeV}$ $\mathcal{B}(\mu \to \mu\gamma) \lesssim 10^{-14}$ (expected) gives $m_{\rho} \gtrsim O(50)$ TeV;
- electron EDM d_e: relevant even in models with flavor symmetries;
- $\underline{\tau} \rightarrow \mu$ transitions ($\tau \rightarrow e$ suppressed by m_e/m_μ) $-\mathcal{B}(\tau \rightarrow \mu \gamma) \lesssim 10^{-12}$ is not observable $-\mathcal{B}(\tau \rightarrow \mu \overline{\mu} \mu, \mu \overline{e} e, \mu \eta) \sim (10^{-10} - 10^{-9})$ currently allowed, but probed in the future

SUMMARY

• IF observables are sensitive to the localization of fermions.

• IF and EF experiments are sensitive to different localization schemes and are therefore complementary tools for excluding/discovering RS models.

• Experiments measuring flavor diagonal (EDM) and off-diagonal ($\mu \rightarrow e\gamma$, $\tau \rightarrow \mu$ conversion) observables in the lepton sector will also constrain models with and without flavor symmetries in a complementary way.

• A comprehensive analysis of these observables is in preparation.