# Dijet resonances and Quark compositeness at hadron colliders

Felix Yu Fermilab

Dijet resonance current status: from Bogdan Dobrescu, FY [arXiv:1306.2629]

Dijet resonances sensitivity: FY

**UED projection: Kyoungchul Kong, FY** 

Quark compositeness: Suneet Upadhyay, Daniel Whiteson, FY

Snowmass Energy Frontier Workshop, U. of Washington, Seattle July 2, 2013

# Dijet resonances – barebones theory

- Many BSM models have additional gauge symmetry
  - Generic signature is a new vector resonance
  - An important class of models have leptophobic gauge bosons
    - Z'<sub>B</sub> (baryon number)
    - G' (coloron)
- Separately, the simplest s-channel resonance at a high energy hadron collider is a dijet resonance
  - qq̄ resonance
  - gg resonance: loop-induced (e.g. Higgs)
  - qg resonance: loop-induced
  - qq resonance: flavor constraints

#### **BSM Parameters**

- Natural to consider sensitivity for dijet resonances
  - Production and decay vertices use same coupling
  - Two parameters: coupling and mass (other NP heavy)
    - Leptophobic, and no tree-level gluon coupling
    - Universal coupling to quarks BR to jj (including bb̄) only depends on mass
      - Interplay with t\u00e4 resonance searches

– Map effective rate ( $\sigma \times Br \times A$ ) limits into coupling vs.

mass plane



# Coupling—mass mapping

- Higher energy colliders probe ever heavier resonances
  - Are still sensitive to more weakly-coupled resonances
  - Low end of resonance search window also moves up
    - More QCD background at low masses competes with finite trigger bandwidth
- As run conditions change (higher instantaneous luminosity), triggers are also adjusted upwards
  - Small luminosity studies may be the final word on low mass dijet resonances for an experiment
- Sensitivity gaps develop at crossover points
- The coupling—mass mapping highlights these gaps
  - Also aids comparisons of different searches with different luminosities and colliders

4/16

# Past searches

|                            |                               | I           |       | ATLAS [11] $3.15 \times 10^{-4}$ | 300 - 1700  |
|----------------------------|-------------------------------|-------------|-------|----------------------------------|-------------|
| Collider                   | Experiment                    | Mass        |       | ATLAS [12] $3.6 \times 10^{-2}$  | 600-4000    |
| $\sqrt{s} \; (\text{TeV})$ | Luminosity (fb $^{-1}$ )      | Range (GeV) | _     | ATLAS [13] 0.16                  | 900-4000    |
| $p\bar{p},0.63$            | UA1 [2] $4.9 \times 10^{-4}$  | 150-400     | -     | ATLAS [14] 0.81                  | 900-4000    |
|                            | UA2 [3] $4.7 \times 10^{-3}$  | 80–320      | pp, 7 | ATLAS [15] 1.0                   | 900-4000    |
|                            | UA2 [4] $10.9 \times 10^{-3}$ | 140–300     |       | ATLAS [16] 4.8                   | 1000-4000   |
| $p\bar{p},1.8$             | CDF [5] $2.6 \times 10^{-6}$  | 60–500      | -     | CMS [19] $2.9 \times 10^{-3}$    | 500 - 2600  |
|                            | . ,                           |             |       | CMS [20] 1.0                     | 1000 - 4100 |
|                            | CDF [6] $4.2 \times 10^{-3}$  | 200–900     |       | CMS [21] 5.0                     | 1000-4300   |
|                            | CDF [7] $1.9 \times 10^{-2}$  | 200-1150    |       | CMS [22] 0.13                    | 600-1000    |
|                            | CDF [8] 0.11                  | 200-1150    |       | CMS [23] 4.0                     | 1000-4800   |
|                            | D0 [10] 0.11                  | 200-900     | pp, 8 | ATLAS [17] 5.8                   | 1500-4000   |
| $p\bar{p}, 1.96$           | CDF [9] 1.1                   | 260-1400    | -     | ATLAS [18] 13                    | 1500-4800   |
|                            |                               |             | -     | CMS [24] 20                      | 1200-5300   |

### Coupling vs. mass limits: Z'<sub>B</sub> dijet resonance



## Future sensitivity

- Generate QCD background in bins of leading jet p<sub>T</sub> using MadGraph 5 + Pythia 6 with MLM matching
  - Cluster with FastJet, anti-kT, R = 0.5
  - Smooth dijet invariant mass spectrum

Follow similar procedure as CMS NOTE 2006/069 and CMS NOTE 2006/070



Flat K-factor of 1.40
No detector simulation
No pile-up
Trigger bandwidth issues

Thanks to C. Williams for helpful discussions

## Future sensitivity

- Generate QCD background in bins of leading jet p<sub>T</sub> using MadGraph 5 + Pythia 6 with MLM matching
  - Cluster with FastJet, anti-kT, R = 0.5
  - Smooth dijet invariant mass spectrum

Same procedure as CMS NOTE 2006/069 and CMS NOTE 2006/070



Bump hunting! (Follow cuts in CMS 1302.4794 analysis)

Construct 95% C.L. exclusion projections from statistical uncertainties only

# Coupling vs. mass current limits: Z'B



# Coupling vs. mass projections: Z'B



# Coupling vs. mass current limits: G'



# Coupling vs. mass projections: G'



12/16

#### Dijet resonances: remaining issues

- Estimate systematic uncertainties
- Add discovery sensitivity curves
- Will also discuss KK gluons in this channel
  - Translate to UED model parameters
- Start of search window is driven by trigger
  - Possibility for parked data at HL LHC?
- Prospects for sub-TeV mass window require alternate triggers
  - Can be studied in current Tevatron and LHC data
- Should be cognizant of possible sensitivity gaps as we transition to new energies and luminosities

with KC Kong

# Quark compositeness

with S. Upadhyay, D. Whiteson

 Instead of a resonance feature, look for deviations in dijet angular distributions at high dijet masses

Follow CMS analysis<sup>1</sup> Probe  $\Lambda$  scale of 6D, four quark operator Use LO background and signal from MadGraph 5 + Pythia + Delphes Focus on highest mass bin



<sup>1</sup>CMS, JHEP **1205**, 055 (2012) [arXiv:1202.5535 [hep-ex]]

# Results for 14 TeV, 300 fb<sup>-1</sup>

Optimize mass threshold

#### **Example data**





### Summary

- The dijet final state is an important benchmark
  - If history holds, a dijet resonance search is likely the first BSM result from any future hadron collider
- Coupling—mass mapping (though model-dependent) provides a useful presentation of current limits and future sensitivities
  - New resonances will trace out contours in this plane
  - Sub-TeV regime can be probed by associated production modes
    - Also, can study ILC production from Z' radiation off final state quarks
  - Need to identify and ameliorate sensitivity gaps
- Quark compositeness searches probe even higher scales for possible new physics

# Hadron collider genealogy

- CERN SPS, pp machine
  - 630 GeV, 10.9 pb<sup>-1</sup>
- Tevatron, pp machine
  - Run I: 1.8 TeV, 110 pb<sup>-1</sup>
  - Run II: 1.96 TeV, 10 fb<sup>-1</sup>
- LHC, pp machine
  - Run I: 7 TeV, 5 fb<sup>-1</sup>; 8 TeV, 20 fb<sup>-1</sup>
    - CMS parked data, 13 fb<sup>-1</sup>
  - Run II: 13 (14) TeV, 300 fb<sup>-1</sup> (anticipated)

#### Other thresholds





#### Other thresholds





#### Other thresholds



# 33 TeV study in progress

#### chi at 33 TeV Lam 0.1

