LHC Potential for ZH→II + invisible Search

Snowmass: Seattle Energy Frontier Workshop June 30 - July 3, 2013

Hideki Okawa¹, Josh Kunkle², Elliot Lipeles²

¹Brookhaven National Laboratory, ²University of Pennsylvania

ZH(→II+inv.) Search @ LHC

- LEP apparently has no sensitivity for m_H > ~120 GeV
- Complementary approach to the Higgs coupling studies

DIRECT search for the invisible decays of Higgs; BSM process

- Cut-based analysis using Z+E_Tmiss final state.
- Has one of the highest sensitivities

 among direct H(→inv) search

 channels. (cf. other channels; VBF, monojet, W+E_Tmiss)

ATLAS-CONF-2013-034

ATLAS Moriond Results

First results at Moriond EW and onwards using the full 2011 & 2012 HCP dataset (4.7 fb⁻¹ + 13.0 fb⁻¹)

- The first direct search for the invisible Higgs at the LHC.
 BR(H→inv)<0.65@95% CL obs.
- Also showed interpretations for "another" Higgs scenario

Hideki Okawa

Samples for Snowmass Studies

 Used Delphes samples produced by the Snowmass production team (Thank you so much)

Background:

- ZZ/WZ/WW(&Zy,Wy): BB samples with 5 H_T slices
- Top: ttbar (tt samples) with 5 H_T slices, single top (tj, tB samples) to be added for the next round (though almost negligible for this channel)
- Z/W+jets: B samples with inclusive H_T production

Signals:

ZH→II+inv. signals: produced with MadGraph5 & ran Delphes v.
 3.0.9 with different pileup conditions (0, 50, 140)

ATLAS Event Selection

ATLAS event selection used for Moriond

ATLAS-CONF-2013-011

- 2 opposite-sign lepton w/ $76 < M_{\parallel} < 106 \text{ GeV}$; 3rd lepton veto (p_T>7 GeV)
- E_Tmiss > 90 GeV

- $d\phi(I,I) < 1.7$
- Fractional p_T difference ($IE_T^{miss} p_T^{\parallel}I / p_T^{\parallel}) < 0.2$
- $d\phi(Z, E_T^{miss}) > 2.6$

• dφ(E_Tmiss, E_Tmiss, trk) < 0.2

Jet veto $(p_T > 20 \text{ GeV}, |\eta| < 2.5)$

Snowmass Scenarios

- **14 TeV scenarios:** 300 fb⁻¹ (pileup μ=50) & 3000 fb⁻¹ (pileup μ=140)
- Made minor modifications to the ATLAS ZH(→II+invisible) event selection for the following reasons
 - Missing E_T: degradation of resolution due to more pileup
 - Removed dΦ(E_T^{miss}, track p_T^{miss}) cut for now. Detailed investigations are needed for the tracks in Delphes samples.
 - Jet veto threshold: pileup subtraction is not applied in the Delphes samples (which is different from the ATLAS conditions).
 So, we simply raised the p_T threshold for now.

Snowmass Event Selection

Changes to the cut thresholds

- $E_T^{miss} > 90 \rightarrow 100 \text{ GeV}$
- $|E_T^{miss} p_T^{||}| / p_T^{||} < 0.2 \rightarrow 0.4$
- Jet veto p_T threshold : 20→45 GeV

Signal significance without BG uncertainty ~ 1.6 (3.1) for signals w/ BR(H→inv)=10% (20%) at 300 fb⁻¹

14 TeV 3000 fb⁻¹ (μ =140)

Changes to the cut thresholds

- $E_T^{miss} > 90 \rightarrow 170 \text{ GeV}$
- $|E_T^{miss} p_T^{\parallel}| / p_T^{\parallel} < 0.2 \rightarrow 0.6$
- $d\phi(I,I) < 1.7 \rightarrow 0.8$

Preliminary

Jet veto p_T threshold : 20→60 GeV

Higgs-Portal Interpretation

- The limits on BR(H→inv) could be mapped to bounds on the coupling of Higgs-dark matter (DM) & DM-nucleon cross section for Higgs-portal DM models
- The Higgs-portal is a particular type of DM models, where DM interacts through the couplings to Higgs.

Mapping & DM-types

Higgs invisible decay Higgs-DM coupling DM-nucleon xsec

$$\Gamma(h \to \chi \chi) \iff \lambda_{h\chi\chi}^2 \iff \sigma_{N\chi}$$

 $BR(h \to \chi \chi) = \frac{\Gamma(h \to \chi \chi)}{\Gamma(h \to \chi \chi) + \Gamma(h \to SM)}$

$$\lambda_{h\chi\chi}^2$$

$$\sigma_{N\chi}$$

We consider three DM types: scalar, vector, majorana fermion

$$\Gamma^{\text{Scalar}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \text{ Scalar}} v^{2}}{64\pi m_{h}} \left[1 - \left(\frac{2m_{\chi}}{m_{h}} \right)^{2} \right]^{1/2}$$

$$\Gamma^{\text{Vector}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \, \text{Vector}} v^{2}}{256\pi m_{\chi}^{4} m_{h}} \left[m_{h}^{4} - 4m_{\chi}^{2} m_{h}^{2} + 12m_{\chi}^{4} \right] \left[1 - \left(\frac{2m_{\chi}}{m_{h}} \right)^{2} \right]^{1/2} \qquad \sigma_{\chi N}^{\text{Vector}} = \frac{\lambda_{h\chi\chi}^{2 \, \text{Vector}}}{16\pi m_{h}^{4}} \frac{m_{N}^{4} f_{N}^{2}}{\left(m_{\chi} + m_{N} \right)^{2}}$$

$$\Gamma^{\text{Majorana}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \text{ Majorana}} v^2 m_h}{32\pi\Lambda^2} \left[1 - \left(\frac{2m_\chi}{m_h}\right)^2 \right]^{3/2} \qquad \sigma_{\chi N}^{\text{Majorana}} = \frac{\lambda_{h\chi\chi}^{2 \text{ Majorana}}}{4\pi\Lambda^2 m_h^4} \frac{m_\chi^2 m_N^4 f_N^2}{(m_\chi + m_N)^2}$$

$$\sigma_{\chi N}^{
m Scalar} = rac{\lambda_{h\chi\chi}^{2~
m Scalar}}{16\pi m_h^4} rac{m_N^4 f_N^2}{\left(m_\chi + m_N
ight)^2}$$

$$\sigma_{\chi N}^{\text{Vector}} = \frac{\lambda_{h\chi\chi}^{2 \text{ Vector}}}{16\pi m_h^4} \frac{m_N^4 f_N^2}{\left(m_\chi + m_N\right)^2}$$

$$\sigma_{\chi N}^{ ext{Majorana}} = rac{\lambda_{h\chi\chi}^{2 ext{ Majorana}}}{4\pi\Lambda^2 m_h^4} rac{m_\chi^2 m_N^4 f_N^2}{\left(m_\chi + m_N
ight)^2}$$

BR(H→inv) to Higgs-Portal

- Mapped BR(H→inv)=10% line (as a benchmark) to Higgs-portal DM interpretation
- Very good sensitivity in m_X<m_H/2 region
- Uncertainty from the nucleon form factor is shown (left plot)

Hideki Okawa

Summary & Plans

- Showed preliminary studies on the prospects of LHC for ZH→II +invisible channel.
- Considered benchmark luminosities & μ-values proposed by the Snowmass committee.
- As this channel significantly relies on the performance of Missing E_T , improving the pileup suppression in the Missing E_T calculation would have quite an impact on the signal sensitivity.
- As long as E_T^{miss} is under control, the main background is ZZ.
 The systematics of ZZ will be the key component for the signal sensitivity.
- Detailed investigations are ongoing, and expected limits for the Snowmass scenarios are to be provided.

backups

Moriond Results

- Consistent with the SM predictions.
- Limits are set on the two scenarios as mentioned in the next slide.

Data Period	2011 (7 TeV)	2012 (8 TeV)
ZZ	$23.5 \pm 0.8 \pm 2.5$	56.5 ± 1.2 ± 5.7
WZ	$6.2 \pm 0.4 \pm 0.7$	$13.9 \pm 1.2 \pm 2.1$
WW	$1.1 \pm 0.2 \pm 0.2$	used $e\mu$ data-driven
Top quark	$0.4 \pm 0.1 \pm 0.4$	used $e\mu$ data-driven
Top quark, WW and $Z \rightarrow \tau \tau$ (e μ data-driven)	used MC	$4.9 \pm 0.9 \pm 0.2$
Z	$0.16 \pm 0.13 \pm 0.09$	$1.4 \pm 0.4 \pm 0.7$
W + jets, multijet	$1.3 \pm 0.3 \pm 0.2$	$1.4 \pm 0.4 \pm 0.3$
Total BG	$32.7 \pm 1.0 \pm 2.6$	$78.0 \pm 2.0 \pm 6.5$
Observed	27	71

Moriond Results

From Moriond CONF note

Process	Estimation method	Uncertainty (%)	
		2011	2012
ZH Signal	MC	7	6
ZZ	MC	11	10
WZ	MC	12	14
WW	MC	14	not used
Top quark	MC	90	not used
Top quark, WW and $Z \rightarrow \tau \tau$	$e\mu$ CR	not used	4
Z	ABCD method	56	51
W + jets, multijet	Matrix method	15	22

- ZZ, WZ are dominated by the jet systematics & theory uncertainty
- Z uncertainty comes from both the statistical and systematical uncertainty.