Determinations of α_s from hadronic width of W and Z at TLEP ## A. Blondel and P. Janot Present value: without Lattice result. $\alpha_s(M z) = 0.1183 \pm 0.0012$ ## 1. From W hadronic width $B_h \equiv (\Gamma_{had.} / \Gamma_{tot})_W$ WW \rightarrow lv lv /(all WW) = $(1-B_h)^2$ WW \rightarrow Iv qq /(all WW) = 2.B_h (1-B_h) $WW \rightarrow qq qq /(all WW) = B_h^2$ Present value at LEP ($4x10^4$ WW events) $B_h = 67.41 \pm 0.27$ Model dependence: assumption on unitarity of CKM matrix (alternatively best experimental constraint on V_{cs}) (see arXiv:1302.3415) With 0.5 10^8 W pairs, and assuming selection efficiency errors scale with statistics, expect reduction of error by factor ~70. Then extract value of $\alpha s(M_W)$ with error $\alpha_s(M_W) = 0.11xxx \pm 0.00018$ (reduction by factor 6 wrt present value) NB ILC limited to one order of magnitude higher. ## 2. From Z hadronic width $R_{\parallel} = \Gamma_{Z-> had} / \Gamma_{\parallel}$ Present value at LEP ($2x10^7$ Z decays) 20.767 ± 0.0027 limited by lepton statistics. 0.1190 ± 0.0027 Model dependence: assumption on vector couplings of u,d,s. Also sensitive to δ_b EW vertex correction to Z-> bb decay. With 10¹² Z decays, and assuming selection efficiency errors scale with statistics, expect reduction of error by factor ~200! At this level of precision many other effects come into the picture and a more detailed analysis is necessary – main worry are extreme QED effects that would affect topology/detection efficiency for lepton final state . Direct extraction of Rb constrains δ_b --> not a limitation. \rightarrow Error on value of $\alpha_s(M_Z)$ extracted from Z hadronic width has a statistical potential at 10⁻⁵ level. Obtaining $\alpha_s(M_Z) = 0.11xxx \pm 0.0001$ (reduction by factor 30 wrt present value) Seems feasible but lots of work, and not excluded that a better result could be obtained. NB ILC limited to improvement by factor 7 (GigaZ)