

Study of Quartic Boson Coupling in Triboson

Shih-Chieh Hsu
University of Washington Seattle
On behalf of the Snowmass EWK VBS/Triboso Group

(C. Degrande, O. Eboli, J.Holzbauer, S.C. Hsu, A Kotawal, S. Li, O. Mattelaer, L.Marx, J. Metcalfe, M.-C. Pleier, M. Rominsky)

Snowmass Energy Frontier All hands-on Workshop Seattle

Dim8 Operators

Dim8 operators unique to Triboson production

- No constraint from inclusive diboson process
- Complementary studies w.r.t. VBS scattering

Higgs Field

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

Higgs and Gauge boson

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$

$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

Gauge boson field only

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling

O.J.P. Eboli, et. al. Phys.Rev.D74:073005,2006

QGC Vertex

	wwww	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	X	X	X	О	О	О	О	O	О
$\mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$	X	X	X	X	X	X	X	O	О
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	О	X	X	X	X	X	X	O	О
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	X	X	X	X	X	X	X	X	X
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	О	X	X	X	X	X	X	X	X
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	О	О	X	О	О	X	X	X	X

Table 1: Quartic vertices modified by each dimension-8 operator are marked with X.

14TeV 3000fb-1/33TeV 3000fb-1 Jenny Holzbauer and Mandy Rominsky

14TeV 300fb-1 /14TeV 3000fb-1 Lynn Marx and Shih-Chieh Hsu ATLAS-PHYS-PUB-2013-006

Each Operator has different effects on different quartic boson vertex

Heavy Triboson

Cross-section and Ratio vs SM at 10 TeV-4 14TeV pp

Coupling	WWW	WWZ	WZZ	ZZZ
Sm Cross-section(pb)	0.000568000	0.000111800	0.000009634	0.000000972
sm/sm	1.00	1.00	1.00	1.00
fs0/sm	1.00	1.00	1.00	1.00
fs1/sm	1.00	1.00	1.00	1.00
fm0/sm	1.49	1.09	1.05	1.02
fm1/sm	1.18	1.02	1.04	1.03
fm2/sm	1.00	1.05	1.00	1.02
fm3/sm	1.00	1.01	1.00	1.01
ft0/sm	19.10	4.23	3.38	2.90
ft1/sm	15.88	2.23	2.83	2.90
ft2/sm	4.61	1.33	1.35	1.54
ft8/sm	1.00	1.00	1.00	1.31
ft9/sm	1.00	1.00	1.00	1.08

Event Selection:

- At least three leptons
- •No events with two leptons with same flavor and opposite sign (suppress Diboson, W/Z+X)
- •No missing ET cut (unnecessary + avoid pileup dependence)
- •High M(III) (to be considered in order to reduce tt~)

Mass of three leptons is sensitive to aQGC

T0 Sensitivity

Sensitivity improvements:

- 300fb-I vs 3ab-I:x2
- I4TeV vs 33 TeV: x10

Unitarity violating phase space to be studied

 $T0/\Lambda^4$ (pp > WWW), lepton-only, TeV⁻⁴

ZAA

Lead Photon pT > 160GeV Photon/Muon/Ele pT>25 GeV Photon/Muon/Ele |eta|<2

ATLAS ESG jet-to-pho fake rate (constant rate of 0.001)

T8/T9 Limit

sensitivity doubled from 300fb-1 to 3000fb-1

$$\mathcal{L}_{T,8} = \frac{f_{T8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = \frac{f_{T9}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Summary

• A systematic survey of aQGC in multi-boson final states benchmarked with Dim8 operators (ATLAS-PHYS-PUB-2013-006)

Parameter	dimension	channel	Λ_{UV} [TeV]	300	fb ⁻¹	3000 fb^{-1}	
				5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV^{-2}	20 TeV^{-2}	16TeV^{-2}	9.3 TeV^{-2}
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	$10 {\rm TeV^{-4}}$	6.8 TeV^{-4}	4.5 TeV^{-4}	$0.8 \; {\rm TeV^{-4}}$
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV^{-4}	0.7 TeV^{-4}	$0.6 {\rm TeV^{-4}}$	0.3 TeV^{-4}
f_{T8}/Λ^4	8	$Z\gamma\gamma$	12	0.9 TeV^{-4}	0.5 TeV^{-4}	0.4 TeV^{-4}	0.2 TeV^{-4}
f_{T9}/Λ^4	8	$Z\gamma\gamma$	13	2.0 TeV^{-4}	0.9 TeV^{-4}	0.7 TeV^{-4}	0.3 TeV^{-4}

HL or HE hadron colliders?

Parameter	channel	I4TeV 0.3ab-I	14TeV 3ab-1	33TeV 3ab-1
$C\Phi W/\Lambda 2$	ZZjj	34 TeV-2	16.0 TeV-2	12.5 TeV-4
fΤ0 /Λ4	WWW	I.2 TeV-4	0.5 TeV-4	0.05 TeV-4
fT1 /Λ4	WZjj	1.3 TeV-4	0.6 TeV-4	0.3 TeV-4

Toward Snowmass white paper:

- Restrict studies to non-Unitarity violation phase space for all channels
- Include more channels: Wyy, WWy, WWZ, ...
- Comparison: facilities (100TeV pp/ILC) operators: chiral Lagrangian

Tools for this Study

- Monte Carlo
 - MadGraph : 5.1.5.10
 - Pythia : 6.426
 - Delphes-ATLAS-ESG-2-0-0 by Peter Onyisi
 - FeynRule UFO Files by Oscar Eboli et. al. http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling
 - PotonParam by Fernando G. Monticelli et. al.

<u>svn+ssh://svn.cern.ch/reps/atlasgroups/PhysicsAnalysis/EuropeanStrategy/</u>

- Limit Calculators
 - Today just simple single bin counting experiments
 - For approval use Chris Pollard's limit calculator https://svnweb.cern.ch/trac/atlasusr/browser/cpollard/UpgradePythia/trunk