Beam-beam simulations including Beamstrahlung in TLEP

K.Ohmi (KEK)

TLEP workshop at Fermilab, 25-26 July, 2013

Thanks to F. Zimmermann, K. Yokoya

Contents

- Beamstrahlung
- Weak-strong simulation to compare with Yokoya's formula.
- Weak-strong simulation with self-consistent bunch length for TLEP.
- Strong-strong simulation for TLEP.

Beamstrahlung

- Synchrotron radiation during beam-beam interaction
- Number of photon

$$dn_{\gamma} = \frac{5\sqrt{3}\alpha\gamma}{6\rho}ds$$

• Photon energy

$$\langle u \rangle = \frac{8}{15\sqrt{3}} \hbar \omega_c = \frac{4}{5\sqrt{3}} \frac{\hbar c \gamma^3}{\rho} \qquad \qquad \omega_c = 0$$

• Photon energy fluctuation

$$\langle u^2 \rangle = \frac{11}{27} (\hbar \omega_c)^2 = \frac{11}{12} \frac{\hbar^2 c^2 \gamma^6}{\rho^2}$$

• Energy loss and fluctuation of beam

$$\langle d\delta \rangle = dn_{\gamma} \langle u \rangle = \frac{2r_e \gamma^3}{3\rho^2} ds \qquad \langle d\delta^2 \rangle = dn_{\gamma} \langle u^2 \rangle = \frac{55}{24\sqrt{3}} \frac{r_e \hbar}{mc} \frac{\gamma^5}{\rho^3} ds$$

 $\frac{3c\gamma^3}{2\rho}$

• Beam motion $\frac{dp_{x,y}}{ds} = \frac{1}{\rho_{x,y}}$

Simplified formula by K. Yokoya

• Gaussian flat beam, linear approximation

$$\frac{dp_x}{ds} = \frac{4n_e r_e}{\gamma} \frac{x}{\sigma_x(\sigma_x + \sigma_y)} = \frac{1}{\rho_x}$$

• Energy loss

$$\int d\delta_{BS} = \int_{-\infty}^{\infty} \frac{2r_e^3 \gamma}{3} \left(\frac{4n_e(s)}{\sigma_x + \sigma_y}\right)^2 ds = 0.864 r_e^3 \gamma \left(\frac{N_e}{\sigma_z(\sigma_x + \sigma_y)}\right)^2 \sigma_z$$

• Number of photon

 n_e : number of electron containing in dz

$$\int dn_{\gamma} = \int_{-\infty}^{\infty} \frac{5\sqrt{3}\alpha r_e}{6} \frac{4n_e(s)}{\sigma_x + \sigma_y} ds = 2.12 \frac{\alpha r_e N_e}{\sigma_x + \sigma_y}$$

$$\sqrt{\langle d\delta_{BS} \rangle^2} = d\delta_{BS} \sqrt{0.1639 + \frac{5.129}{n_{\gamma}}}$$

Beamstrahlung in LEP3 and TLEP (Yokoya's formula)

• LEP3

$$d\delta_{BS} = 0.864 r_e^3 \gamma \left(\frac{N_e}{\sigma_z(\sigma_x + \sigma_y)}\right)^2 \sigma_z = 3.9 \times 10^{-4} \qquad n_\gamma = 2.12 \frac{\alpha r_e n_e}{\sigma_x + \sigma_y} = 0.61$$

diffusion rate $\sqrt{\langle d\delta_{BS} \rangle^2} = d\delta_{BS} \sqrt{0.1639 + \frac{5.129}{n_\gamma}} = 1.1 \times 10^{-3}$
energy spread $\sigma_{SDS} = \sqrt{\tau_c / T_{SS}} \sqrt{\langle d\delta_{DS} \rangle^2} = 5.5 \times 10^{-3}$

$$\sigma_{\delta.BS} = \sqrt{\tau_{\epsilon}/T_0} \sqrt{\langle d\delta_{BS} \rangle^2} = 5.5 \times 10^{-3}$$

• TLEP

$$d\delta_{BS} = 0.864 r_e^3 \gamma \left(\frac{N_e}{\sigma_z(\sigma_x + \sigma_y)}\right)^2 \sigma_z = 3.5 \times 10^{-4} \qquad \qquad n_\gamma = 2.12 \frac{\alpha r_e n_e}{\sigma_x + \sigma_y} = 0.5$$

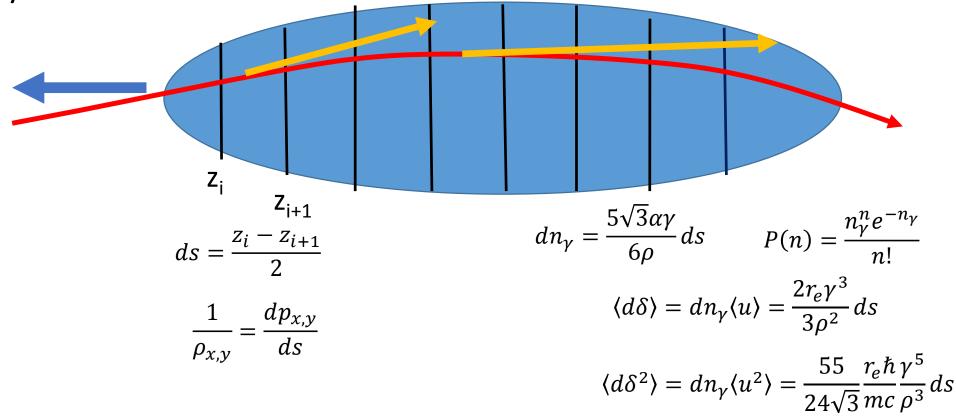
diffusion rate $\sqrt{\langle d\delta_{BS} \rangle^2} = 1.1 \times 10^{-3}$ energy spread $\sigma_{\delta,BS} = 1.2 \times 10^{-2}$

Simulation of the beamstrahlung

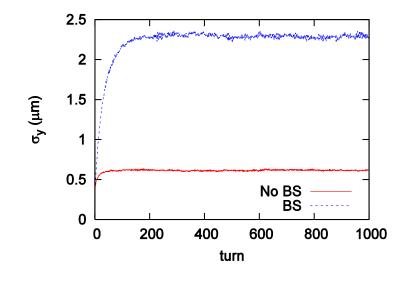
- Slice beam along bunch length, $s=(z-z_i)/2$ for collision of particle (z) and i-th slice.
- Calculate beam-beam kick

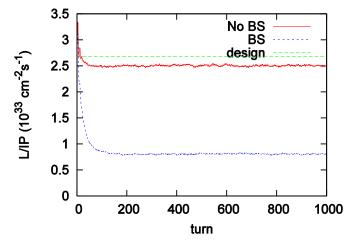
$$\frac{dp_x}{ds} = \frac{4n_e r_e}{\gamma} F_x \qquad F_y + iF_x = \sqrt{\frac{\pi}{2(\sigma_x^2 - \sigma_y^2)}} \left[w \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) - exp \left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right) w \left(\frac{(\sigma_y/\sigma_x)x + i(\sigma_x/\sigma_y)y}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) \right] \qquad \text{or} \qquad F_{x(y)} = -\frac{\partial \phi_{PIC}}{\partial x(y)}$$

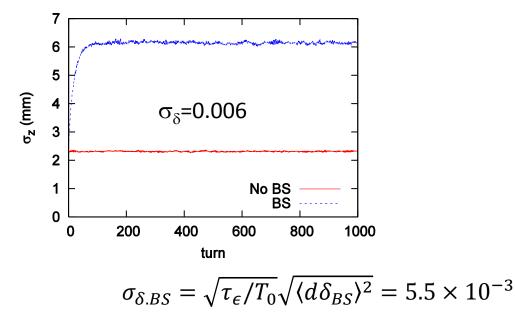
- Number of photon emitted by interaction of a slice $dn_{\gamma} = \frac{5\sqrt{3}\alpha\gamma}{6\rho} ds \qquad \qquad \frac{1}{\rho_{x,y}} = \frac{dp_{x,y}}{ds} \qquad \qquad \frac{1}{\rho^2} = \frac{1}{\rho_x^2} + \frac{1}{\rho_y^2}$
- Energy loss and diffusion (photon energy and fluctuation)


$$\langle u \rangle = \frac{8}{15\sqrt{3}} \hbar \omega_c = \frac{4}{5\sqrt{3}} \frac{\hbar c \gamma^3}{\rho} \qquad \langle u^2 \rangle = \frac{11}{27} (\hbar \omega_c)^2 = \frac{11}{12} \frac{\hbar^2 c^2 \gamma^6}{\rho^2} \qquad \langle u^2 \rangle - \langle u \rangle^2 = \frac{211}{300} \frac{\hbar^2 c^2 \gamma^6}{\rho^2}$$

$$\langle d\delta \rangle = dn_\gamma \langle u \rangle = \frac{2r_e \gamma^3}{3\rho^2} ds \qquad \langle d\delta^2 \rangle = dn_\gamma \langle u^2 \rangle = \frac{55}{24\sqrt{3}} \frac{r_e \hbar \gamma^5}{mc \rho^3} ds$$

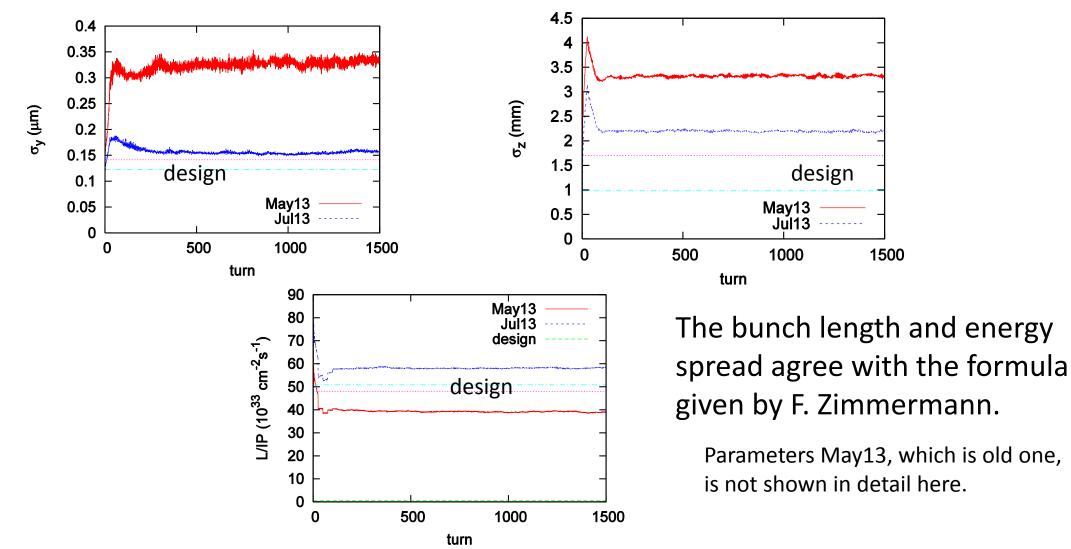

• Poisson process for n_{γ} emission $P(n) = \frac{n_{\gamma}^n e^{-n_{\gamma}}}{n!}$


Schematic view of the simulation


- Calculate trajectory interacting with colliding beam.
- Particles emit synchrotron radiation due to the momentum kick dp/ds.

Test using weak-strong model (LEP3)

The equilibrium σ_{δ} agrees with Yokoya's formula. Note σ_z is not self-consistent.

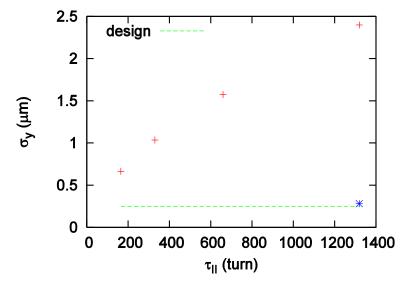

Parameter list for TLEP July 2013

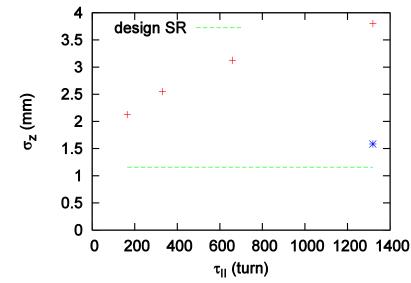
Courtesy of F. Zimmermann

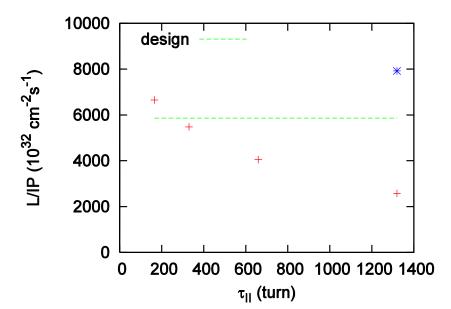
	TLEP Z	TLEP W	TLEP H	TLEP t
E _{beam} [GeV]	45	80	120	175
circumf. [km]	100	100	100	100
beam current [mA]	1440	154	29.8	6.7
#bunches/beam	7500	3200	167	160
#e-/bunch [10 ¹¹]	4.0	1.0	3.7	0.88
horiz. emit. [nm]	29.2	3.3	7.5	2.0
vert. emit. [nm]	0.06	0.017	0.015	0.002
mom. c. α _c [10 ⁻⁵]	3.6	0.4	0.4	0.1
β* _x [m]	0.5	0.2	0.5	1.0
β* _v [mm]	1.0	1.0	1.0	1.0
σ* _x [μm]	121	26	61	45
σ* _v [μm]	0.25	0.13	0.12	0.045
δ ^{sr} _{rms} [%]	0.05	0.09	0.14	0.20
σ ^{SR} _{z,rms} [mm]	1.16	0.91	0.98	0.68
δ ^{tot} rms [%]	0.13	0.20	0.30	0.23
σ ^{tot} _{z,rms} [mm]	2.93	1.98	2.11	0.77
V _{RF} ,tot [GV]	2	2	6	12
t (turns)	1319	242	72	23
ξ <u>,</u> /IP	0.068	0.086	0.094	0.057
ξ _v /IP	0.068	0.086	0.094	0.057
vs	0.257	0.0633	0.09	0.0468
<i>L</i> /IP[10 ³² cm ⁻² s ⁻¹]	5860	1640	508	132
number of IPs	4	4	4	4
beam lifetime [min] (rad. Bhabha)	99	38	24	21
beam lifetime [min] (beamstrahlung Telnov with h=2%)	>10 ²⁵	>10 ⁶	38	14

Weak-strong with Self consistent bunch length (TLEP)

• σ_z is revised by the average of every 100 bb interactions.

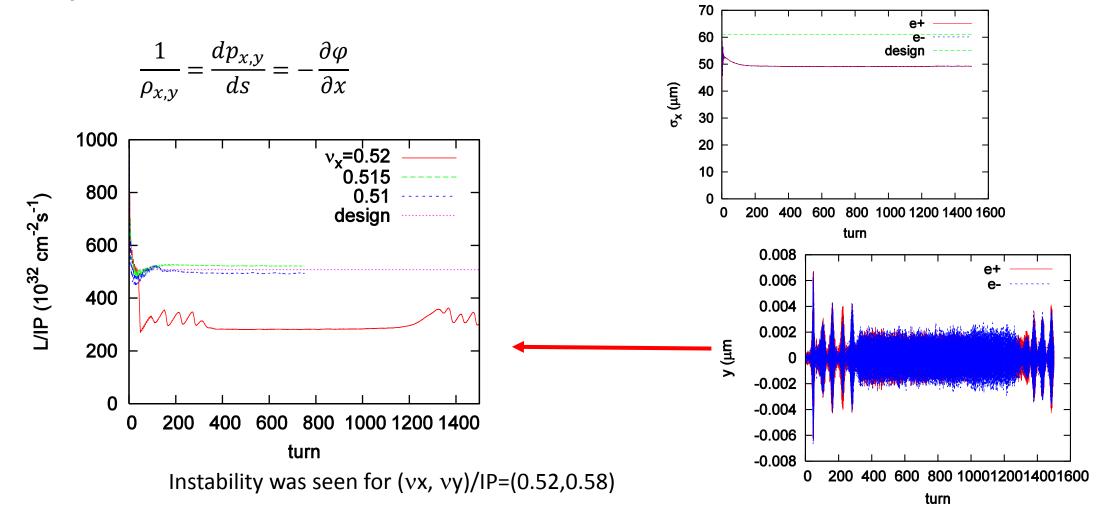



Luminosity and bunch length by weak-strong

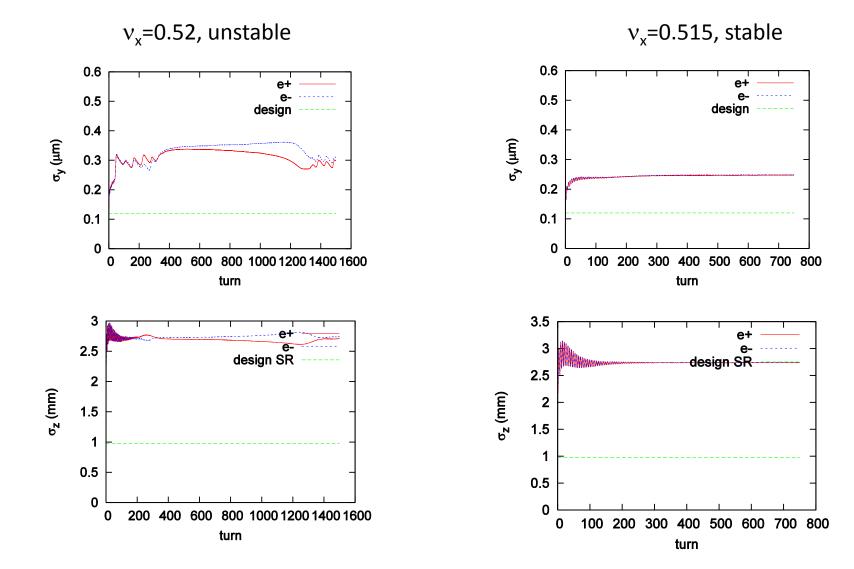

	TLEP-Z	TLEP-Z -II	TLEP-W	TLEP-H	TLEP-t
E (GeV)	45	45	80	120	175
#e–/bunch [10 ¹¹]	4.0	2.0	1.0	3.7	0.88
Nbunch	7500	15000	3200	167	160
Damping time (turn)	1318	1319	242	72	23
σx/σγ (μm)	121/0.25	61/0.125	26/0.13	61/0.12	45/0.045
σ_z/σ_δ (SR, mm/%)	1.16/0.05	0.73/0.05	0.91/0.09	0.98/0.14	0.68/0.20
L (design, cm ⁻² s ⁻¹)/IP	58.6x10 ³⁴	58.6x10 ³⁴	16.4x10 ³⁴	5.08x10 ³⁴	1.32x10 ³⁴
Weak strong with BS	σ _z self- consistent				
σ_z/σ_δ (mm/%)	3.8/0.16	1.6/0.11	2.1/0.21	2.2/0.31	0.79/0.23
σx/σy (μm)	99/ <mark>2.4</mark>	99/0.25	20/0.18	48/0.16	36/0.044
L (cm ⁻² s ⁻¹)/IP	25.7x10 ³⁴	80.x10 ³⁴	18.4x10 ³⁴	5.8x10 ³⁴	1.56x10 ³⁴

Luminosity of TLEP-Z was lower than the design. TLEP-Z-II : $\varepsilon_x/4$, $\varepsilon_y/4$, N_e/4, $\alpha_p/2.5$, N_{bunch}x4 was investigated. Beamstrahlung is mild.

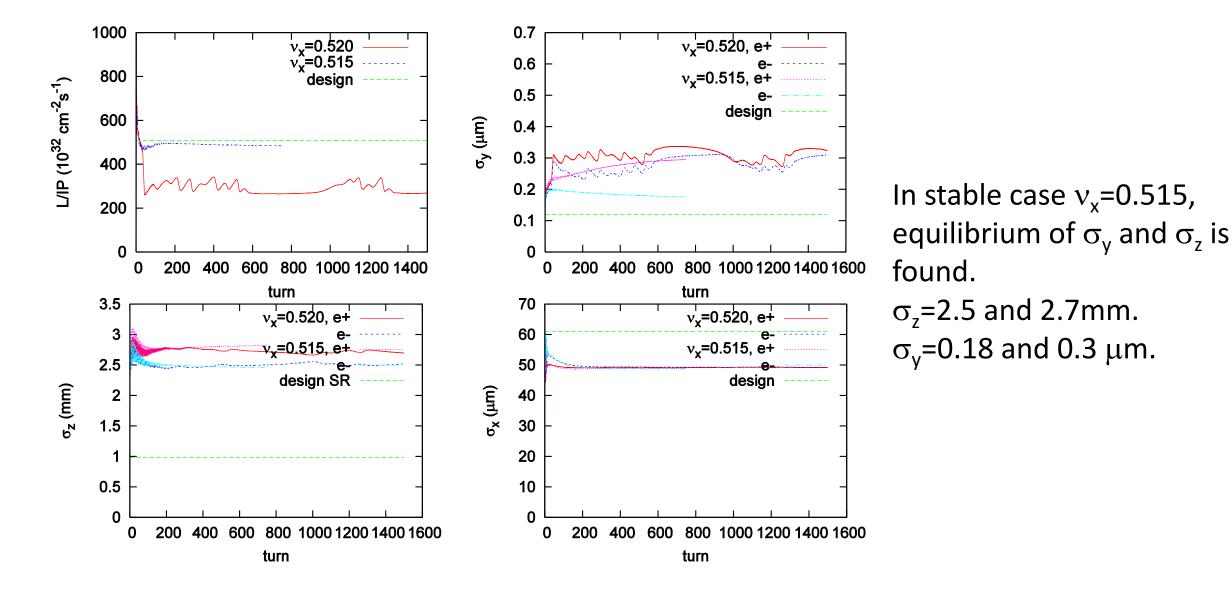
TLEP-Z (scan for the damping time)



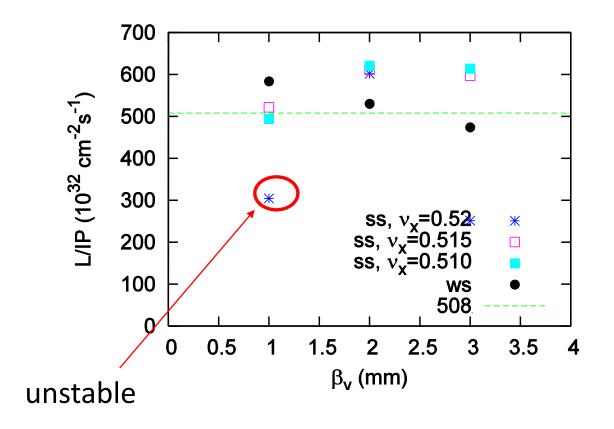
Luminosity of TLEP-Z was lower than the design. Scan parameters to find better performance.


Blue: TLEP-Z-II , $\epsilon_{\rm x}/4,\,\epsilon_{\rm y}/4,\,N_{\rm e}/4,\,\alpha_{\rm p}/2.5,\,N_{\rm bunch}x4$

Strong-strong simulation including beamstrahlung


• $1/\rho$ is calculated by the potential in PIC.

Beam size evolution for unstable and stable cases


Small asymmetry (10% less e+ beam) of beam currents

Luminosity and bunch length

	TLEP-Z-II	TLEP-W	TLEP-H	TLEP-t
E (GeV)	45	80	120	175
#e–/bunch [10 ¹¹]	2.0	1.0	3.7	0.88
σx/σγ (μm)	61/0.125	26/0.13	61/0.12	45/0.045
σ_z / σ_δ (SR, mm/%)	0.73/0.05	0.91/0.09	0.98/0.14	0.68/0.20
L (design, cm ⁻² s ⁻¹)/IP	58.6x10 ³⁴	16.4x10 ³⁴	5.08x10 ³⁴	1.32x10 ³⁴
Weak strong with BS	σ_z self-consistent			
σ_z / σ_δ (mm/%)	1.6/0.11	2.1/0.21	2.2/0.31	0.79/0.23
σx/σy (μm)	99/0.25	20/0.18	48/0.16	36/0.044
L (cm ⁻² s ⁻¹)/IP	80.x10 ³⁴	18.4x10 ³⁴	5.8x10 ³⁴	1.56x10 ³⁴
			Strong-strong	
$\sigma_z / \sigma_\delta (mm/\%)$			2.7/0.38	
σx/σy (μm)			50/0.25	
L (cm ⁻² s ⁻¹)/IP			5.2x10 ³⁴	
(vx, vy)/IP			0.515,0.58	

Scan for β_y

Not sensitive for β_v .

Summary

- Beam-beam simulation including beamstrahlung was performed.
- The Weak-strong simulation agreed with analytic formula (20% longer bunch length and energy spread.
- In the Strong-strong simulation, bunch lengthening due to beamstrahung is enhanced. The horizontal beam size is squeezed by dynamic beta in this operating point.
- Unstable at v_x , v_y =0.52,0.58. Choice of the operating point.
- The simulated luminosity was satisfied to the TLEP design.
- Even asymmetry of two beams, reliable equilibrium was found.