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Outline 
 Why mention APS Upgrade at this workshop?
 Deflecting cavity scheme description
 Challenges in beam dynamics of crab cavities
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Applications of deflecting cavities in storage rings

 Two major applications for deflecting cavities:
– Restoring head-on collisions in crab crossing in colliders

• Suppresses synchro-betatron resonances excited by crab crossing

– Generating short X-ray pulses in light sources
• Allows to take advantage of small vertical beam size to generate 

temporally short pulses

 Some beam dynamics issues are similar:
– Additional impedance
– Cavity generated beam noise

 Some are different
– Beam-beam related effects in colliders
– Coupling increase and related nonlinear dynamics 

complications in light sources
 Major difference is deflection plane: vertical for light 

sources and horizontal for colliders
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Deflecting cavities concept1

Deflecting cavity
at harmonic h of ring
rf frequency.

Radiation from
tail electrons

Radiation from
head electrons

time

vertical position

Pulse can be 
sliced 
or compressed

1A. Zholents et al., NIM A 425, 385 
(1999).

Ideally, second cavity
exactly cancels effect
of first if phase advance
is n*180 degrees
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Short-Pulse X-ray source

Long straight 
section 5
(8 meters long)

Long straight 
section 7 
(8 meters long)

Normal straight 
section 6 
(5 meters long)

ID ID ID ID

Beam

Waveguides for
dampers

cavity

Rf input

 Few picosecond x-ray pulses by applying a local (y,y’)-z correlation 
(“chirp”) bump to stored beam

 Superconducting radio-frequency deflecting cavities operated in 
continuous-wave mode

 Up to 4 ID and 2 BM beam lines, operation in 24 singlets mode

BM BM
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Choice of parameters

 To obtain rms pulse length of 1 ps (2 ps FWHM), the 
deflecting voltage amplitude times harmonic has to be 
(assuming no changes to SR optics):

h V ≈
E

 s f rf 
id
rf 

 y
id


rad
2 Lu

≈15 MV

 Cavities will share straight sections with insertion devices which 
means there will be narrow-gap vacuum chamber

 Large vertical beam size inside 
narrow-gap VC puts lower limit on 
frequency due to lifetime, h > 4

 Chosen deflecting voltage parameters:  
next to them 

6


Vacuum
chamber

V = 2 MV
h = 8
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Effect of cavities on the beam

 Less than total kick cancellation at the second cavity could 
lead to beam emittance increase and to orbit distortion

 Nonlinear beam dynamics is affected
 Cavities introduce additional impedance, and therefore can 

affect single-bunch and multi-bunch instabilities
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Effect on emittance

 In a real machine, many effects could lead to emittance 
degradation
– Various errors and imperfections are first things coming to 

mind
 However, even in a perfect machine the emittance can 

increase many ways
– Path length dependence on the particle energy leads to 

incomplete kick canceling in the second cavity
– Betatron phase advance dependence on energy (chromaticity) 

leads to closed bump condition breaking
– Sextupoles between cavities introduce nonlinearities that 

generate betatron phase advance dependence on amplitude 
and linear coupling between horizontal and vertical planes
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 This effect comes from the path length difference between 
the cavities for particles with different energy

 This effect is present even if there are no errors and 
nonlinearities 

 For a particle with energy deviation 
i
, the time of flight 

differential
 Additional kick after the second cavity is

which gives emittance increase of  

 yi '=
−V  t i

E

 y
 y

=
 y '

2  y '
2

 y '

−1

 For APS case, it gives about 0.3% increase of emittance in a 
single turn which gives negligible effect on overall 
emittance increase

 t i=ciT 0

Momentum compaction
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Chromaticity

 The second cavity is placed at n phase advance to cancel 
the kick of the first cavity

 If there is non-zero chromaticity 
y
 between the cavities, the 

phase advance of a particle with 
i
 is changed by -2

y


i
 

which leads to a particle position change at the second 
cavity y2= y '1 sin 2 yi

 The rms value of the residual amplitude is

 y2
=2 y

V 

E
 t

 For APS parameters with uncompensated chromaticity (no 
sextupoles in these two sectors), this works out to be over 
50% of the nominal vertical beam size of 11 m

 To avoid this emittance increase, sextupoles are 
required between the cavities
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Sextupole nonlinearities

 Introduces amplitude-dependent focusing
– for particles going off-axis the kick cancellation at the second 

cavity is not perfect
 Introduces transverse coupling 

– deflecting cavities generate large vertical trajectories in 
sextupoles

– Vertical trajectory in sextupoles creates coupling between 
large horizontal and small vertical emittances

head

tail
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Beam dynamics simulation methods

 We use tracking to simulate beam dynamics
 We use parallel elegant1 typically utilizing 10-50 CPU cores
 Accelerating cavities are required to simulate synchrotron 

motion
 Synchrotron radiation is essential: to damp initial cavity 

effects
– Tracking is done for 10k turns – about 4 damping times

 Deflecting cavity is simulated as TM-like mode, deflection is 
radius independent resulting from combination of TM- and 
TE-like field2 

1Y. Wang et al., AIP 877, 241 (2006).
2M. Nagl, tesla.desy.de/fla/publications/talks/seminar/FLA-seminar_230904.pdf
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Initial results of the deflecting cavity application

 Right away, we have found significant blow-up of vertical 
emittance due to increased coupling. This can be fixed by 
adjusting sextupole gradients in the two sectors, but creates a 
major problem  
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Nonlinear dynamics challenge in general

 Light sources tend to minimize their beam emittance to the level 
where Dynamic Aperture (DA) and lifetime are barely enough for 
operation

 Many sextupole families are utilized to achieve workable DA and 
lifetime, i.e. for symmetric optics without deflecting cavities. 

 A local sextupole adjustment that minimizes vertical emittance 
growth will violates the earlier sextupole optimization of the whole 
ring

 Even small reduction of DA and lifetime can be crucial 
 Further investigations requires including the deflecting cavity 

effects on nonlinear dynamics
 The cavity effects are defined by large vertical trajectories 

between deflecting cavities:
– Physical acceptance is decreased
– Additional linear and nonlinear coupling is introduced
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Injection and lifetime with deflecting cavities

Injection
amplitude

Lifetime reduction with 
original sextupoles

Reduction due to a skew
sextupole resonance with
original sextupole distribution

Reduction due to 
vertical physical aperture
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Sextupole optimization with deflecting cavities

 Sextupoles between the cavities are needed to compensate 
for natural chromaticity

 At the same time large vertical trajectories in sextupoles 
lead to vertical emittance increase and nonlinear dynamics 
deterioration

 Optimization of sextupoles between cavities allows to solve 
each problem separately

 Now we need to satisfy everything at the same time
 The best way to do it is to use multi-objective optimization, 

and do it as a part of overall lattice design
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Sextupole optimization (2)

 The optimization is done using a genetic optimizer 
 Every optimizer evaluation consists of

– Linear optics design (if required)
– Interior sextupoles optimization for vertical emittance blowup 

minimization
– Exterior sextupole optimization for DA/LMA

 The penalty functions are vertical emittance increase, DA 
area, and lifetime

 It is very CPU-hungry process, it requires parallel 
computations, but it gives satisfactory results
– We are able to achieve satisfactory dynamic aperture and 

lifetime without any increase of vertical emittance
 DA/LMA evaluation with cavities on is not included in 

optimization yet
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Vertical emittance after global sextupole 
optimization

 Particles are tracked for 
10k turns (several 
damping times)

 Sextupoles were 
optimized for extreme 
case of 50-ps-long bunch 
and 4MV

 Vertical emittance growth 
below 10% is achieved

 Two bunch lengths 
corresponding to two 
different operating 
conditions are shown
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Deflecting voltage tolerances

 The voltage could vary in amplitude and phase, and 
variations at both cavities could follow each other 
(common-mode) or not (differential-mode)

 Common-mode variations affect the beam only between 
the cavities
– Important for colliders
– Not as important for light sources because the beam size 

between cavities is greatly increased
 Differential-mode variations affect the beam everywhere

– Give very tight tolerances for light sources due to small 
vertical beam sizes

 Will not talk about common-mode tolerances
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Differential mode tolerances

 When the voltage waveform in the second cavity does not 
exactly follow the first cavity, the resulting effect of two 
cavities on the beam is non-zero:
V sin  t −VV  sin t≈V cos  t sin −V sin 

 The first term provides a 
net orbit kick because its 
value is non-zero at the 
center of the bunch (t=0)

 The second term 
generates beam tilt 
outside of the deflecting 
cavities and affects 
projected beam sizes

 The effect can be treated as a single source orbit distortion 
and a single deflecting cavity with voltage V.
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Tolerances: Orbit

 Want to keep orbit variation under some fraction of nominal 
beam emittance (total APS beam motion budget in terms of 
beam motion invariant is 1% of beam emittance)

 Using APS parameters, we get:

 This is quite a tight
tolerance for rf phase

 0.08 deg or 80 fs
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Tolerances: Emittance

 Various errors affect the outside beam sizes
– Differential deflecting voltage
– Vertical betatron phase advance not equal to N*
– Beta function mismatch
– Cavity and magnet roll

 All these errors except differential deflecting voltage are 
static
– Beta function error can be compensated by changing relative 

voltage of second cavity
– Phase advance error can be compensated by changing relative 

voltage of first and second sets of cells in second cavity
– Cavity roll is found to be a weak effect1

– Magnet roll can be corrected with additional skew quadrupoles
 We will only look at effect of differential voltage errors

1M. Borland, PRSTAB 8, 074001 (2005).
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Tolerances: Emittance (3)

 If we require that the beam size increase does not exceed 
10% of the total beam size, for APS parameters we get:

V
V

0.01

 Realistic tracking simulations of the emittance sensitivity to 
the voltage errors show good agreement:
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Collective effects

 Can be separated into short- and long-range effects
 Long-range effects generate multi-bunch instabilities 
 Short-range wake fields limit single bunch current
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Cavity impedance requirements
 Initial estimates of largest allowable resonator impedances 

(assuming high Qs) for bunch train stability were given to rf 
designers

 Dampers were designed that produced very low Qs and 
shunt impedances

 Monte Carlo simulations of the damped-Q HOM resonators 
(with randomized frequency) verifies stable beam 
conditions
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Collective effects (2)

 Short-range wake fields could limit single bunch current
 Additional impedance comes from cavities and vacuum 

chamber transitions
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Cavity alignment requirements

 Cavity misalignment has several effects:
– Beam-induced power generation due to transverse misalignment could 

damage the rf components
– Beam arrival jitter combined with transverse offset leads to rf phase 

noise
– Cavity roll can affect beam emittance

 Beam orbit can only be steered through “average” cavity center 
but cavity-to-cavity misalignment cannot be compensated 

 Realistically achievable alignment is taken into account

Here X is horizontal, Y is vertical, and Z is longitudinal 
directions.
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Conclusions

 Deflecting cavities could affect single particle beam 
dynamics through nonlinearities on large trajectories 
between the cavities
– Sextupoles and nonlinearities of the deflecting fields could limit 

momentum and dynamics aperture
– Sextupoles could greatly increase transverse coupling
– Sextupole distribution solved by genetic algorithm and massive 

tracking on computer cluster
 Cavities could increase beam emittance and generate beam 

motion through rf noise in cavities
– Leads to engineering tolerances

 Cavities introduce additional impedance, and therefore can 
affect single-bunch and multi-bunch instabilities
– Approach the same way as other rf cavities, i.e. dampers, 

careful design of tapers, feedback systems.
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