

Beam Dynamics for Crab Cavities in the APS Upgrade

Louis Emery (presenter) and Vadim Sajaev (author)
Accelerator Systems Division
Argonne National Laboratory

5th TLEP Workshop July 25th-26th, 2013

Outline

- Why mention APS Upgrade at this workshop?
- Deflecting cavity scheme description
- Challenges in beam dynamics of crab cavities

Applications of deflecting cavities in storage rings

- Two major applications for deflecting cavities:
 - Restoring head-on collisions in crab crossing in colliders
 - Suppresses synchro-betatron resonances excited by crab crossing
 - Generating short X-ray pulses in light sources
 - Allows to take advantage of small vertical beam size to generate temporally short pulses
- Some beam dynamics issues are similar:
 - Additional impedance
 - Cavity generated beam noise
- Some are different
 - Beam-beam related effects in colliders
 - Coupling increase and related nonlinear dynamics complications in light sources
- Major difference is deflection plane: vertical for light sources and horizontal for colliders

Deflecting cavities concept¹

¹A. Zholents et al., NIM A 425, 385 (1999).

Short-Pulse X-ray source

- Few picosecond x-ray pulses by applying a local (y,y')-z correlation ("chirp") bump to stored beam
- Superconducting radio-frequency deflecting cavities operated in continuous-wave mode
- Up to 4 ID and 2 BM beam lines, operation in 24 singlets mode

Choice of parameters

 To obtain rms pulse length of 1 ps (2 ps FWHM), the deflecting voltage amplitude times harmonic has to be (assuming no changes to SR optics):

$$h \ V \approx \frac{E}{\sigma_s \ f_{rf}} \sqrt{\frac{\beta_{id}}{\beta_{rf}}} \sqrt{\frac{\epsilon_y}{\beta_{id}} + \frac{\lambda_{rad}}{2 \ L_u}} \approx 15 \ MV$$

- Cavities will share straight sections with insertion devices which means there will be narrow-gap vacuum chamber
- Large vertical beam size inside narrow-gap VC puts lower limit on frequency due to lifetime, h > 4
- Chosen deflecting voltage parameters: next to them

Effect of cavities on the beam

- Less than total kick cancellation at the second cavity could lead to beam emittance increase and to orbit distortion
- Nonlinear beam dynamics is affected
- Cavities introduce additional impedance, and therefore can affect single-bunch and multi-bunch instabilities

Effect on emittance

- In a real machine, many effects could lead to emittance degradation
 - Various errors and imperfections are first things coming to mind
- However, even in a perfect machine the emittance can increase many ways
 - Path length dependence on the particle energy leads to incomplete kick canceling in the second cavity
 - Betatron phase advance dependence on energy (chromaticity) leads to closed bump condition breaking
 - Sextupoles between cavities introduce nonlinearities that generate betatron phase advance dependence on amplitude and linear coupling between horizontal and vertical planes

Momentum compaction

- This effect comes from the path length difference between the cavities for particles with different energy
- This effect is present even if there are no errors and nonlinearities
- For a particle with energy deviation δ_i , the time of flight differential $\Delta t_i = \alpha_c \delta_i T_0$
- Additional kick after the second cavity is $\Delta y_i' = \frac{-V \omega \Delta t_i}{E}$

which gives emittance increase of

$$\frac{\Delta \epsilon_{y}}{\epsilon_{v}} = \frac{\sqrt{\sigma_{y'}^{2} + \sigma_{\Delta y'}^{2}}}{\sigma_{v'}} - 1$$

 For APS case, it gives about 0.3% increase of emittance in a single turn which gives negligible effect on overall emittance increase

Chromaticity

- The second cavity is placed at $n\pi$ phase advance to cancel the kick of the first cavity
- If there is non-zero chromaticity ξ_y between the cavities, the phase advance of a particle with δ_i is changed by $-2\pi\xi_y\delta_i$ which leads to a particle position change at the second cavity $y_2 = \beta \ y'_1 \sin(2\pi \ \xi_y \delta_i)$
- The rms value of the residual amplitude is

$$\sigma_{y_2} = 2\pi \xi_y \beta \frac{V \omega}{E} \sigma_{\delta} \sigma_t$$

- For APS parameters with uncompensated chromaticity (no sextupoles in these two sectors), this works out to be over 50% of the nominal vertical beam size of 11 μm
- To avoid this emittance increase, sextupoles are required between the cavities

Beam Dynamics for Crab Cavities in the APS Upgrade

Sextupole nonlinearities

- Introduces amplitude-dependent focusing
 - for particles going off-axis the kick cancellation at the second cavity is not perfect
- Introduces transverse coupling
 - deflecting cavities generate large vertical trajectories in sextupoles
 - Vertical trajectory in sextupoles creates coupling between large horizontal and small vertical emittances

Beam dynamics simulation methods

- We use tracking to simulate beam dynamics
- We use parallel elegant¹ typically utilizing 10-50 CPU cores
- Accelerating cavities are required to simulate synchrotron motion
- Synchrotron radiation is essential: to damp initial cavity effects
 - Tracking is done for 10k turns about 4 damping times
- Deflecting cavity is simulated as TM-like mode, deflection is radius independent resulting from combination of TM- and TE-like field²

²M. Nagl, tesla.desy.de/fla/publications/talks/seminar/FLA-seminar_230904.pdf

¹Y. Wang et al., AIP 877, 241 (2006).

Initial results of the deflecting cavity application

 Right away, we have found significant blow-up of vertical emittance due to increased coupling. This can be fixed by adjusting sextupole gradients in the two sectors, but creates a major problem

Nonlinear dynamics challenge in general

- Light sources tend to minimize their beam emittance to the level where Dynamic Aperture (DA) and lifetime are barely enough for operation
- Many sextupole families are utilized to achieve workable DA and lifetime, i.e. for symmetric optics without deflecting cavities.
- A local sextupole adjustment that minimizes vertical emittance growth will violates the earlier sextupole optimization of the whole ring
- Even small reduction of DA and lifetime can be crucial
- Further investigations requires including the deflecting cavity effects on nonlinear dynamics
- The cavity effects are defined by large vertical trajectories between deflecting cavities:
 - Physical acceptance is decreased
 - Additional linear and nonlinear coupling is introduced

Injection and lifetime with deflecting cavities

Reduction due to vertical physical aperture

Reduction due to a skew sextupole resonance with original sextupole distribution

Sextupole optimization with deflecting cavities

- Sextupoles between the cavities are needed to compensate for natural chromaticity
- At the same time large vertical trajectories in sextupoles lead to vertical emittance increase and nonlinear dynamics deterioration
- Optimization of sextupoles between cavities allows to solve each problem separately
- Now we need to satisfy everything at the same time
- The best way to do it is to use multi-objective optimization, and do it as a part of overall lattice design

Sextupole optimization (2)

- The optimization is done using a genetic optimizer
- Every optimizer evaluation consists of
 - Linear optics design (if required)
 - Interior sextupoles optimization for vertical emittance blowup minimization
 - Exterior sextupole optimization for DA/LMA
- The penalty functions are vertical emittance increase, DA area, and lifetime
- It is very CPU-hungry process, it requires parallel computations, but it gives satisfactory results
 - We are able to achieve satisfactory dynamic aperture and lifetime without any increase of vertical emittance
- DA/LMA evaluation with cavities on is not included in optimization yet

Vertical emittance after global sextupole optimization

- Particles are tracked for 10k turns (several damping times)
- Sextupoles were optimized for extreme case of 50-ps-long bunch and 4MV
- Vertical emittance growth below 10% is achieved
- Two bunch lengths corresponding to two different operating conditions are shown

Deflecting voltage tolerances

- The voltage could vary in amplitude and phase, and variations at both cavities could follow each other (common-mode) or not (differential-mode)
- Common-mode variations affect the beam only between the cavities
 - Important for colliders
 - Not as important for light sources because the beam size between cavities is greatly increased
- Differential-mode variations affect the beam everywhere
 - Give very tight tolerances for light sources due to small vertical beam sizes
- Will not talk about common-mode tolerances

Differential mode tolerances

• When the voltage waveform in the second cavity does not exactly follow the first cavity, the resulting effect of two cavities on the beam is non-zero:

$$V\sin(\omega t) - (V + \Delta V)\sin(\omega t + \Delta \phi) \approx V\cos(\omega t)\sin(\Delta \phi) - \Delta V\sin(\omega \phi)$$

- The first term provides a net orbit kick because its value is non-zero at the center of the bunch (t=0)
- The second term generates beam tilt outside of the deflecting cavities and affects projected beam sizes
- The effect can be treated as a single source orbit distortion and a single deflecting cavity with voltage ΔV .

Tolerances: Orbit

- Want to keep orbit variation under some fraction of nominal beam emittance (total APS beam motion budget in terms of beam motion invariant is 1% of beam emittance)
- Using APS parameters, we get:

 $\Delta \phi$ < 0.08 deg or 80 fs

 This is quite a tight tolerance for rf phase

Tolerances: Emittance

- Various errors affect the outside beam sizes
 - Differential deflecting voltage
 - Vertical betatron phase advance not equal to $N^*\pi$
 - Beta function mismatch
 - Cavity and magnet roll
- All these errors except differential deflecting voltage are static
 - Beta function error can be compensated by changing relative voltage of second cavity
 - Phase advance error can be compensated by changing relative voltage of first and second sets of cells in second cavity
 - Cavity roll is found to be a weak effect¹
 - Magnet roll can be corrected with additional skew quadrupoles
- We will only look at effect of differential voltage errors

¹M. Borland, PRSTAB 8, 074001 (2005).

Tolerances: Emittance (3)

• If we require that the beam size increase does not exceed 10% of the total beam size, for APS parameters we get:

$$\frac{\Delta V}{V} < 0.01$$

Realistic tracking simulations of the emittance sensitivity to the voltage errors show good agreement:

Collective effects

- Can be separated into short- and long-range effects
- Long-range effects generate multi-bunch instabilities
- Short-range wake fields limit single bunch current

Cavity impedance requirements

 Initial estimates of largest allowable resonator impedances (assuming high Qs) for bunch train stability were given to rf designers

Shunt impedance	Limit
Longitudinal	
$(R_s f_{HOM})$ for one monopole HOM/LOM	$0.44~\mathrm{M}\Omega\text{-GHz}$
R_s for one monopole HOM/LOM at 2 GHz	$0.22~\mathrm{M}\Omega$
Transverse	
R_t for one x-plane HOM/LOM	$1.3~\mathrm{M}\Omega/\mathrm{m}$
R_t for one y-plane HOM/LOM	$3.9~\mathrm{M}\Omega/\mathrm{m}$

- Dampers were designed that produced very low Qs and shunt impedances
- Monte Carlo simulations of the damped-Q HOM resonators (with randomized frequency) verifies stable beam conditions

Collective effects (2)

Short-range wake fields could limit single bunch current

Additional impedance comes from cavities and vacuum

chamber transitions

25

Stored Current (mA)

30

40

Cavity alignment requirements

- Cavity misalignment has several effects:
 - Beam-induced power generation due to transverse misalignment could damage the rf components
 - Beam arrival jitter combined with transverse offset leads to rf phase noise
 - Cavity roll can affect beam emittance
- Beam orbit can only be steered through "average" cavity center but cavity-to-cavity misalignment cannot be compensated
- Realistically achievable alignment is taken into account

	Cryomodule	Cavity inside
	alignment	cryomodule
ΔX	$\pm 500~\mu\mathrm{m}$	$\pm 500~\mu\mathrm{m}$
ΔY	$\pm 200~\mu\mathrm{m}$	$\pm 200~\mu\mathrm{m}$
ΔZ	$\pm 1000~\mu\mathrm{m}$	$\pm 1000~\mu\mathrm{m}$
Yaw	$\pm 10~\mathrm{mrad}$	$\pm 10~\mathrm{mrad}$
Pitch	$\pm 10~\mathrm{mrad}$	$\pm 10~\mathrm{mrad}$
Roll	$\pm 10~\mathrm{mrad}$	$\pm 10~\mathrm{mrad}$

Here X is horizontal, Y is vertical, and Z is longitudinal directions.

Conclusions

- Deflecting cavities could affect single particle beam dynamics through nonlinearities on large trajectories between the cavities
 - Sextupoles and nonlinearities of the deflecting fields could limit momentum and dynamics aperture
 - Sextupoles could greatly increase transverse coupling
 - Sextupole distribution solved by genetic algorithm and massive tracking on computer cluster
- Cavities could increase beam emittance and generate beam motion through rf noise in cavities
 - Leads to engineering tolerances
- Cavities introduce additional impedance, and therefore can affect single-bunch and multi-bunch instabilities
 - Approach the same way as other rf cavities, i.e. dampers, careful design of tapers, feedback systems.

