Control of detuning in superconducting cavities

Ivan Lemesh,
Moscow Institute of Physics and Technology
Supervisor: Warren Shappert

Summer student meeting 7/9/2013

Outline

- 1.Introduction to detuning of the cavities
- 2. How to control detuning
- 3.My goals

Superconducting cavities (SC)

- Operate at HF modes (1.3 GHz)
- Bandwidth ~200 Hz
- Niobium at T = 1.8K
- RLC circuit behaviour:

$$\frac{d^2y}{dt^2} + \frac{R}{L}\frac{dy}{dt} + \frac{1}{LC}y(t) = \frac{1}{L}u(t)$$

u – forward signal; y – probe signal;

Detuning in cavities

1. Lorentz force detuning

o deterministic nature:

$$\frac{\omega_0 - \omega}{\omega_0} = \frac{\int\limits_{\Delta V} \left(\epsilon_0 |\vec{E}_0|^2 - \mu_0 |\vec{H}_0|^2 \right) dV}{\int\limits_{V} \left(\epsilon_0 |\vec{E}_0|^2 + \mu_0 |\vec{H}_0|^2 \right) dV}$$

o contracting the cell near iris

Deformation of cavity cell with stiffening ring gradient: 25 MV/m a) with stiffening ring b) without stiffening ring

2. Microphonics

- stochastic process
- o sources: helium pressure variations, machinery, traffic
- mechanical bandwidth of noise up to 1 kHz

How to control detuning?

- 1. Adjusting the input power
 - Energy consuming
 - Costs for SC accelerator
 are increased by 10 to 20 %

- 2. Feedback or feed-forward with piezo-attentuator:
 - o Latency up to 1 ms
 - o resolution 1/100 nm

Piezo attentuator

Process of microphonics control

The control process:

- 1. Getting a probe IF signal y(t)
- 2. Cavity: $\frac{d^2y}{dt^2} + \frac{R}{L} \frac{dy}{dt} + \frac{1}{LC} y(t) = \frac{1}{L} u(t)$ Numerical solution using Virtex 4 board => getting forward signal u(t)
- 3. Compensation of the shape distortion using piezo

Virtex 4 board:

- FPGA chip
- VHDL programming language
- 2 independent 14 bits ADC channels
- 2 independent 14 bits DAC channels

A)

B)

Xilinx® XtremeDSP Development Kit, Virtex-4 Edition.

A) With case. B) Without case

My goals

- 1. Improving speed of the existing cavity simulator
- 2. Building microphonics controller (inverse problem)
- 3. Microphonics measurements using real cavities, including SSR1 cavity