Superconducting Accelerator Magnets - a key to high-energy high-luminosity colliding beams

A.V. Zlobin

Fermilab PARTI 2013 Summer Students Meeting 16 July 2013

ᅷ

<u>Outline</u>

- * Electromagnet in accelerators
- * Why superconducting magnets?
- ***** SC magnet possibilities and limitations
- * Why do we need higher fields in accelerators and how to generate high fields?
- ***** SC material options for HF magnets
- * Nb-Ti magnets
- Nb₃Sn magnets
- * Example of HFM design, fabrication and test
 - o 11 T dipole for LHC upgrade or VLHC
- *** HTS/LTS hybrid magnets**

* Summary

- * Magnetic field is the most efficient way to affect charged particle beam in accelerators
- * The force acting on a charged particle

$$\vec{F} = q[\vec{v} \times \vec{B}]$$

- Important field configurations
 - o Dipole B=const beam bending
 - o Quadrupole B~r beam focusing
 - o Sextupole B \sim r² cromaticity correction
 - ο ...
 - o Solenoids

Accelerator Electromagnets

Magnetic fields are generated by electrical currents (Bio-Savart law)

$$B(z) = \frac{I\mu_0}{2\pi(z-z_0)}.$$

Magnetic field could be represented as combination of multipoles

$$B(z) = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_{ref}}\right)^{n-1} = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

Good field quality ~10⁻⁴ in aperture is achieved by block size and position optimization

PARTI meeting, 16 July 2013

A. Zlobin - SC Accelerator Magnets

Iron dominated electromagnets

- Magnetic field produced by current
- Field quality formed by iron pole shape
- ***** Field quality limit $B_{max} \sim 2 T$ (iron saturation)
- Soule heating => coil cooling

Accelerator dipoles and quadrupoles

Dipole configuration (60° coil)

$$B_{D} = -\frac{\sqrt{3}\mu_{0}}{\pi} J_{e} w \qquad B_{3} = 0, B_{2k} \circ 0, k = 1, 2, \dots$$

Quadrupole configuration (30° coil)

$$G_Q = -\frac{\sqrt{3\mu_0}}{\pi} J_e \ln(1 + \frac{w}{r}) \qquad B_6 = 0, B_{2k+1} \circ 0, k = 0, 1, 2, ...$$
$$G_Q \approx -\frac{\sqrt{3\mu_0}}{\pi} J_e w/r \text{ for } w/r \ll 1$$

B_D and G_Q are proportional to coil width w and current density J_e

Importance of current density Je

$$B_D = -\frac{\sqrt{3}\mu_0}{\pi}J_e w$$

- * Coil J_e is a key parameter.
- Resistive magnets with water cooled Cu or Al cable
 - o J_e ∼5-50 A/mm²
- Superconducting magnets
 - o J_e ~500-1000 A/mm²
- SC magnets are more compact and have lower operational costs (only power consumption is to keep them cold)
- The highest fields in accelerator magnets was achieved using SC magnets.

<u>J_e and B limit for SC magnets</u>

- Superconductivity exists inside the critical surface in (J,B,T) space.
- Critical surface depend on superconductor chemical composition
- * J_e (and B) in SC magnets is limited by the $J_c(B)$ in superconductor at given operation temperature.

PARTI meeting, 16 July 2013

4000 resistive 3000 Current density (A/mm²) superconducting 2000 magnet aperture field 1000 magnet peak field 0 0 2 6 8 10 4 Field (T)

Why do we need higher field magnets?

* For a fixed size of a circular collider, its energy is limited by the strength of bending dipole magnets.

 $E[GeV] = 0.3RB[m \cdot T]$

- Tevatron: E~1 TeV, B~4 T, D~2 km
- LHC: E~7 TeV, B~8 T, D~9 km
- For both linear and circular machines, their maximum luminosity is determined (among other factors) by the strength of quadrupole magnets used for the final beam focusing.

* There are many superconductors (>100), not all of them are practical

- Practical superconductors
 - Nb-Ti $B_{c2}(0)$ ~14 T, $T_{c}(0)$ ~9 K => 10 T magnets
 - 0 Nb₃Sn $B_{c2}(0)$ ~27 T, $T_{c}(0)$ ~18 K => 16-17 T magnets
 - BSCCO/YBCO $B_{c2}(4.2 \text{ K}) > 50 \text{ T}$, $T_{c}(0) \sim 110/90 \text{ K} = > 15 + T \text{ magnets}$
- * These materials are produced by industry in long length (~1 km)

<u>Nb-Ti Accelerator Magnet R&D</u>

Key design elements

- Multifilament Cu-stabilized strand
 => high-Jc, stable, low
 magnetization
- Rutherford cable => high packing factor (~95%), low degradation (<5%)</p>
- Cos-theta coils => accelerator field quality
- Collar-based mechanical structure
 => precision geometry, coil
 prestress and support
- Internal quench protection heaters => quench temperature and voltage limit

Magnet performance (R&D models in 1960-70's)

- Quench performance => operation margins
- Field quality => operation field range
- * Reproducibility

Technology scale up to 6+ m long units in 1970-80's

All that in less than 15 years!!!

Nb-Ti Magnets in Accelerators

SC magnets need cryostat to keep them cold

Large production experience

- o Laboratory production (Tevatron, Nuklotron)
- o Industrial production (HERA, RHIC, LHC)

Reliable long-term operation in real machines

High field magnet R&D

LHC has pushed Nb-Ti to its limits

 Nb-Ti magnet record field
 B_{max}=10.5 T at 1.9 K

R&D directions

- o Improve performance
- Reduce crosssection
- o Increase magnet length

Higher field and operation temperature

PARTI meeting, 16 July 2013

Low field SC magnet R&D

Superferric magnet based on hollow superconductor

Field level and quality provided by iron yoke

R&D directions

- Reduce size, cost and increase length
- Increase operation temperature, reduce cost
- o Rapid cycling magnets

Transmission line combined function magnet based on SC transmission line cable

Superferric magnets based on HTS superconductor

PARTI meeting, 16 July 2013

- Nb₃Sn magnet R&D started simultaneously with Nb-Ti magnets (1960s) adopting the key design solutions, used in Nb-Ti magnets, to specifics of Nb₃Sn superconductor and higher field level:
 - \circ High-J_c Cu-stabilized round strand (several technologies)
 - complicate Heat Treatment to form the Nb₃Sn phase and obtain optimal microstructure for high J_c
 - brittle, strain sensitive after reaction
 - Large d_{eff}, flux jump instabilities, large magnetization
 - **o** Rutherford-type cable fabrication before reaction
 - Low packing factor (85-87%) to avoid strand damage
 - Sensitive to transverse pressure σ_{max} <150-200 MPa
 - o Coil with small bending radii
 - Wind-&-react approach
 - Component compatibility with high-T heat treatment
 - Coil expansion during reaction
 - Brittle coil delicate handling
 - **o** Large Lorentz forces mechanics
 - o Large stored energy protection

PARTI meeting, 16 July 2013

Internal-Tin

Powder-in-tube

MSUT (UT), 1995 50-mm, W&R B_{max}=11.5 T @4.3 K

D20 (LBNL), 1997 50-mm, W&R B_{max}=13.35 T @1.9 K

HFDA05-07 (FNAL), 2004-2006 43-mm, W&R B_{max}=10.2 T @1.9 K

HD2 (LBNL), 2008 36-mm, W&R B_{max}=13.8 T @4.3 K

RD3c (LBNL), 2003 35-mm, W&R B_{max}=10.0 T @4.3 K

* W&R and R&W approach

- Different mechanical structures
- 1967-1995 to reach B>10 T

<u>Nb₃Sn Dipole Short Models</u>

- Record field 13.8 T (HD2)
- Sood quench performance
- * Accelerator field quality
- Reliable quench protection
- * Reproducibility

DCC017 (BNL), 2006 31-mm, R&W B_{max}=10.2 T @4.3 K

Nb3Sn quadrupole models

- **US-LARP Quadrupole models 2005-2013**
- ✤ W&R approach
- Large aperture 90-120 mm
- ♦ B_{max}~11-13 T
- Two mechanical structures
 - o Collar-SS skin
 - o Aluminum shell

<u>Nb₃Sn Technology Scale Up</u>

4-m long Racetrack, D and Q mirror configurations; 90-mm quadrupoles

PARTI meeting, 16 July 2013

FNAL Experience in Nb₃Sn Magnet R&D

*** 2002-2006 – VLHC**

- o 643-mm dipoles and 6 dipole mirrors
- o first in the world series of nearly identical 10 T
 Nb₃Sn magnets
- o first data on quench performance and field quality reproducibility

*** 2007-2010 – LHC upgrade**

- o 7 90-mm quadrupoles and 6 quadrupole mirrors
- o collar based mechanical structure
- o $G_{nom}=200 T/m$, accelerator quality
- * 2007-2011 technology scale up using mirror structure
 - o 2 and 4 m long dipole coils
 - 4-m long quadrupole coil the first Nb₃Sn long coil reached SSL

✤ 2011-2015 – 11 T dipole

- o first 2-in-1 Nb₃Sn design compatible with LHC
- o B_{max}=11.7 T (2013)

<u>B_{max} Progress at Fermilab</u>

- Although the main focus of HFM program at Fermilab was on the accelerator-quality magnets the field level is close to the record fields reached in special models.
- * Conductor is a key component of HFM R&D.

Nb₃Sn accelerator magnet technology is almost ready to provide B_{op} up to 10-12 T

o more R&D is needed to increase B_{op} to 15 T

* Possible applications

- o LHC upgrades
 - 11T twin-aperture dipoles for LHC collimation system upgrade - 2016-2018
 - 150 mm aperture high-gradient quadrupoles for LHC high-luminosity IRs upgrade (ATLAS, CMS) – 2020-2021
 - 15 T arc dipoles and quadrupoles for the LHC energy upgrade – 2030+?
- Muon Collider Storage Ring (MCSR) 2030+
 - 10 T arc dipole and quadrupole
 - 8 T large-aperture large-margin IR dipoles
 - Large-aperture high-gradient IR quadrupoles

*

<u>11 T dipole program</u>

- In 2010 CERN has started planning to upgrade the LHC collimation system
- The ~3.5 m space can be provided by stronger (11 T) and shorter (11 m) dipoles
 - o Nb₃Sn technology
- FNAL and CERN have started joint R&D program to demonstrate feasibility and build a twin-aperture 11 T, 5.5 m long Nb₃Sn dipole prototype by 2015
- The 11 T magnet must be compatible with the LHC lattice and main systems

Magnet Design and Parameters (FNAL)

Parameter	Single-aperture	Twin-aperture	0.7 mm Nb _o Sn strand
Aperture	60 mm		(Decesseseseseseseseses)
Yoke outer diameter	400 mm	550 mm	40-strand cable
Nominal bore field at I _{nom}	10.88 T	11.23 T	R45.047
Short sample field B _{SSL} at T _{op}	13.4 T	13.9 T	0.306
Margin B _{nom} /B _{SSL} at T _{op}	0.81	0.83	R29.875
Stored energy at I _{nom}	424 kJ/m	969 kJ/m	60-mm 2-layer 6-block coil
$F_{\rm x}$ /quadrant at I _{nom}	2.89 MN/m	3.16 MN/m	
$F_{\rm y}$ /quadrant at I _{nom}	-1.58 MN/m	-1.59 MN/m	fi Alto
Jc(12T, 4.2K)=2750 A/mm ² , cable degradation			

Challenges: large field, forces, stored energy!

Stainless steel collar

Magnet Fabrication

40-strand cable fabricated using FNAL cabling machine

Coil fabrication

Collared coil assembly

Cold mass assembly

Magnet Instrumentation and Test

Instrumentation

- o Voltage taps
- o Strain gauges
- o Temperature sensors
- o Quench antenna
- o Rotating probes

Vertical Magnet Test Facility (FNAL)

- o Temperature range 1.9-4.6 K
- o Quench performance
- o Magnetic measurements
- o Heater study
- o Splice resistance, coil RRR

Installation in vertical dewar (VMTF)

Quench Performance

50

40

30

20

10

-10

-20

-30

-40

-50

1000

2000

3000

Current (A)

0

Ave. Multipole Coef. (Units at R=17mm)

Magnetic Measurements

Current (A)

Geometrica	harmonics
------------	-----------

$b_n a_n$	Design	MBHSP01	MBHSP02
b ₂	0.00	-0.50 ± 0.05	-4.93
b ₃	0.21	6.38±0.18	8.44
b_4	0.00	0.02 ± 0.16	-0.17
b ₅	0.88	-0.73 ± 0.02	1.02
b_6	0.00	2.46 ± 1.40	-0.23
b ₇			0.03
b_8			0.18
b ₉			0.9
a_2	0.00	-1.43±1.18	0.14
a ₃	0.00	4.67±0.05	-1.44
a_4	0.00	-2.50 ± 0.24	0.24
a_5	0.00	1.46 ± 0.37	0.15
a_6	0.00	-2.32 ± 0.03	0.00
a ₇			-0.05
a_8			012
a 9			0.3

MBHSP01 PCB probe Loops at 4.5K, bef quench TC1 06Jul2012

A. Zlobin - SC Accelerator Magnets

7000

a3–MBHSP01 26mmL, 20A/

a3–MBHSP01 26mmL, 40A/

6000

٠

5000

4000

a3-MBHSP01 26mmL, 80A/

HTS Accelerator Magnets

Current Density Across Entire Cross-Section

- High-field high-temperature superconductors open the possibility of accelerator magnets with B_{nom}>15 T (B_{des}>18 T assuming typical 20% margin).
- ♦ Due to the lower J_c @ B<18 T (and higher cost) for HTS, a hybrid approach with Nb₃Sn coils in fields <15 T is an attractive option.

P. McIntyre et al.(TAMU), PAC' 2005 L. Rossi, E. Todesco (CERN), HE-LHC'2010 80 60 lowj (mm) 40 HTS Nb-Ti 20 Nb₃Sn Nb₃Sn lowj highj Nb-Ti HTS 75 cm 0 Bi-2212+Nb₃Sn+NbTi 100 0 20 40 60 80 $Bi2212 + Nb_3Sn$ x(mm) Table : Main parameters of the HE-LHC and LHC dipole Table 1. Main parameters of the 24 T hybrid dipole. HE-LHC LHC Dipole dimensions: Operational field 20.0 8.3 (T)

length	30	m
cold mass diameter	80	em
Beam tube diameter	40	mm
Operating temperature	4.5	K
Coil current	33	KA
Maximum stress in windings	150	MPa
Stored energy/bore	5	MJ/m
Total horizontal Lorentz force/bore	40	MN/m

PARTI meeting, 16 July 2013

A. Zlobin - SC Accelerator Magnets

Operational current

Operational margin

Magnetic lenght

Total stored energy

Distance between beams

Maximum coil thickness

Cold mass diameter

(kA)

(%)

(m)

(MJ)

(mm)

(mm)

(mm)

13.8/6.9

20

14.3

100

300

97.3

800

11.8

14

14.3

7.0

194

31

570

- $\mathbf{\dot{v}} \quad \mathbf{Bi}_{2}\mathbf{Sr}_{2}\mathbf{CaCu}_{2}\mathbf{O}_{x} => \mathbf{Bi} 2212$
- Multifilament round 0.7-1.0 mm wire with Ag matrix
- **SC fraction** ~25-30%
- * Traditional PIT process (OST)
 - o Unit length >1 km
- Complex high-temperature final heat treatment in O₂
- Brittle after heat treatment, sensitive to longitudinal and transverse load
- Isotropic properties

- \mathbf{O} YBa₂Cu₃O_y => YBCO-123
- 4-12 mm wide tape, 50% is high strength superalloy (Hastelloy) and ~40% is Cu coating
- YBCO fraction ~1%
- Complex multilayer deposition process and final Cu electroplating (SP)
 - o Unit length ~500-1000 m
- No final heat treatment
- Brittle but withstand substantial load
- Large Ic variation along the tape
 - o limit unit length to 50-200 m
- Highly anisotropic

Present $J_e(24T)$ is ~400A/mm² for both materials. It needs to be increased by a factor of 2-3 for 20 T accelerator magnets.

HTS cables

E. Barzi et al., Fermilab

Rutherford cable works well for round Bi-2212 wire

- o High packing factor ~85%
- o I_c degradation after cabling <20%
- o Sensitive to transverse pressure
- o **R&D at Fermilab and LBNL**

Alternative option

- Round cable inside metal tube to reduce transverse and axial load on Bi-2212 strands
- o Low packing factor

P. McIntyre et al., TAMU

* YBCO tape can be cabled using the Roebel method

- o Large packing factor
- I_c degradation and sensitivity to transverse pressure are being studied
- Under development by Karlsruhe (Germany) and General Cable and Industrial Research,Ltd (NZ)
 - 15/5 YBCO Roebel cable selffield $I_c>10 \text{ kA}$

10-kA HTS cable R&D is critical for 20 T accelerator magnets.

HTS Coil technology

Bi-2212 coils:

- Cos-theta and block-type coil geometry possible
 - R&D using solenoids and small racetrack coils made of single strand and Rutherford cables
- W&R approach
- Complicate multi-step HT cycle
 - o Temperature variations ±1-2 C
- Liquid BSCCO can leak through the Ag matrix during reaction
 - Coil performance is ~50-70% of short sample limit
- Insulation/structure/conductor chemical compatibility

PARTI meeting, 16 July 2013

YBCO coils:

- Block-type coil geometry with relatively small bending radii
 - R&D using solenoids and small racetrack coils based on single tapes so far
- R&W approach
- Coil performance is ~80-90% of short sample limit
 - Tape splicing may degrade the coil performance

A. Godeke et al., LBNL

V. Lombardo et al., Fermilab

The key step is HTS Coil technology R&D based on high-current HTS cables and realistic mechanical structures.

<u>Summary</u>

- NbTi magnets are baseline technology for present circular machines
 - o Bop up to 9 T
- Nb₃Sn magnet technology will provide next step for higher energy higher luminosity machines
 - o Bop=9-15 T
- Accelerator magnets based on HTS materials look feasible thanks to recent progress with HTS materials
 - Present focus on HTS cables and coil technologies
 - NbTi/Nb₃Sn coils will generate ~70% of the total field and play an important role in magnet quench protection and cost