

Reinhard Schwienhorst

MICHIGAN STATE

Outline

- Tevatron proton-antiproton collider
- Heavy flavor production
- QCD events
- Electroweak results
- Top quark measurements
- Higgs boson coupling to fermions
- Conclusions

Tevatron at Fermilab

Run II from 2002 to 2011
CDF and D0: 400 + 400 members from 60 + 70 institutions

Tevatron collider in Run II

FERMILAB'S ACCELERATOR CHAIN

proton-antiproton collider MAIN INJECTOR RECYCLER • 1.96 TeV TEVATRON • 12 fb⁻¹ delivered DZERO TARGET HALL ANTIPROTON • 10 fb⁻¹ recorded per experiment SOURCE CDF • 10 pByte dataset (incl. MC) BOOSTER LINAC per experiment COCKCROFT-WALTON PROTON Antiproton Proton Direction Direction MESON NEUTRINO **Run II Integrated Luminosity** 19 April 2002 - 30 September 2011 Femilab 00-635 12.0 11.0 Luminosity (pb⁻¹) Delivered 11.9 01/04 01/05 01/10 01/06 01/07 01/09 10.0 Recorded 2000 9.0 8.0 0000 **€**7.0) 6.0 5.0 5.0 8000 6000 4.0 4000 3.0 Delivered Acquired 2.0 2000 1.0 0.0 2000 1000 3000 4000 5000 6000 7000 8000 9000 $4_{0r_{73}}4_{0g_{73}}6_{c_{4}g_{73}}6_{c_{4}g_{7}}4_{0r_{6}g_{3}}4_{0r_{6}g_{3}}4_{0r_{6}g_{4}}4_{0g_{6}g_{6}}6_{c_{6}g_{4}}4_{0r_{1}g_{5}}4_{0g_{6}g_{6}}6_{c_{4}g_{5}}4_{0r_{6}g_{6}}4_{0g_{6}g_{6}}6_{c_{4}g_{6}}4_{0g_{7}g_{6}}6_{c_{6}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g_{6}}6_{c_{7}g_{6}}4_{0g_{7}g_{6}}6_{c_{7}g$ store number

Unique Tevatron physics

- proton-antiproton collider
 - quark-antiquark interactions
 - top pairs
 - forward-backward asymmetries
 - single top in the s-channel
- lower CM energy
 - Higgs to bb in associated production
 - lower QCD background
 - coupling to fermions
- Much less pileup than LHC
 - clean events, low trigger thresholds
 - precision top quark mass
 - precision W boson mass

Heavy flavor physics

- Trigger and detector systems for heavy flavor
 - low-pT di-muons and regular reversal of B field (DØ)
 - track trigger and high-precision tracking (CDF)

CP Asymmetries

- Tevatron Proton-Antiproton initial state
 - CP conserving
- Look for neutral meson mixing
- Look for asymmetries in heavy flavor decay rates
- Sensitive to new physics
 - in weak and strong interactions

R A

Like-sign di-muon asymmetry

<u>CP Asymmetry for B^{\pm} </u>

- Asymmetry A: Difference in decay rate for B⁺ and B⁻
 - CP violation in weak decay
- Small (<0.3%) in SM

• Result:

 $A^{J/\psi K} = [0.59 \pm 0.36 \,(\text{stat}) \pm 0.07 \,(\text{syst})] \,\%,$ $A^{J/\psi \pi} = [-4.2 \pm 4.4 \,(\text{stat}) \pm 0.9 \,(\text{syst})] \,\%.$

- Consistent with zero

Most precise measurement

PRL 110, 241801 (2013)

● Strong interaction ↔
 ● Parton distribution functions (PDF)

• Background to most Higgs, top, new physics analyses

QCD jet observables

• Extend energy reach beyond Lep

Reinhard Schwienhorst

Reinhard Schwienhorst

13

Events/0.2

Electroweak results

Electroweak measurements

All single and di-boson processes measured

Also look for anomalous boson couplings in di-bosons

W boson mass

- Well understood detectors
- Well understood theory errors
- Clean event environment
- Expect final Tevatron measurement with <10 MeV uncertainty

$sin\theta_W$ from $Z \rightarrow ee$

- Measured A₄ (V-A interference) from cosθ term of the angular distribution of e+e- pairs with M_{ee} in [66,116] GeV/c²
- Derived $sin\theta_{eff}^{lep}$ and M_W from A₄ and ResBos prediction

PRL 106, 241801 (2011) CDF public note 10952

Reinhard Schwienhorst

Top quark

Reinhard Schwienhorst

Top forward-backward asymmetry

- CDF: $A_{fb}^{lep} = (9.4 \pm 4.3)\%$ • SM@NLO: $A_{fb}^{lep} = 3.6\%$
- Legendre moment to characterize shape

Supports s-channel type model

- Favors s-channel axi-gluon
- Disfavors t-channel Z'

CDF public notes 10974, 10975, submitted to PRL, arXiv:1306.2357

Single top quark production

s-channel signal

Single top without leptons

- Top mass reconstructed from top pair decay products
- lepton+jets, di-lepton and all-jet final states
- Dominant uncertainties
 - Signal modeling
 - Jet energy scale

Mass of the Top Quark in Different Decay Channels

Top and W and Higgs boson masses

MICHIGAN STATE

- Extrapolate Higgs coupling to Planck Scale (10¹⁹ GeV)
- Depends on top mass
 - Current value \rightarrow Higgs quartic coupling negative at 10¹⁰ GeV

- Extrapolate Higgs coupling to Planck Scale (10¹⁹ GeV)
- Depends on top mass
 - Current value \rightarrow Higgs quartic coupling negative at 10¹⁰ GeV
- Indication of new physics!

Higgs at the Tevatron

Measure Higgs coupling to Fermions
So far only place in the world to do so

Higgs: fermion coupling in associated production

		+				
		e				
			Channel		Luminosity	m_H range
-		A/+			(fb^{-1})	(GeV/c^2)
			$WH \rightarrow \ell \nu bb$ 2-jet channels $4 \times (5 b\text{-tag categories})$		9.45	90 - 150
	$a \rightarrow a/t$		$WH \rightarrow \ell\nu bb$ 3-jet channels $3 \times (2 b \text{-tag categories})$		9.45	90-150
	Y VV	\sim	$ZH \rightarrow \nu \bar{\nu} bb$ (3 <i>b</i> -tag categories)	.	9.45	90 - 150
			$ZH \rightarrow \ell^+ \ell^- bb$ 2-jet channels $2 \times (4 b\text{-tag categories})$	$H \rightarrow bb$	9.45	90 - 150
			$ZH \rightarrow \ell^+ \ell^- bb$ 3-jet channels $2 \times (4 b$ -tag categories)		9.45	90 - 150
		N	$WH + ZH \rightarrow jjbb$ (2 b-tag categories)		9.45	100 - 150
	a'		$ttH \rightarrow W^+ bW^- bbb$ (4 jets,5 jets, ≥ 6 jets)×(5 b-tag categories)		9.45	100-150
X.	9 L	40,	$H \to W^+W^- = 2 \times (0 \text{ jets}) + 2 \times (1 \text{ jet}) + 1 \times (\geq 2 \text{ jets}) + 1 \times (\text{low-}m_{\ell\ell})$	2)	9.7	110 - 200
	1	b b	$H \rightarrow W^+W^- (e - \tau_{\rm had}) + (\mu - \tau_{\rm had})$		9.7	130 - 200
			$WH \rightarrow WW^+W^-$ (same-sign leptons)+(tri-leptons)	$H \rightarrow W^+W^-$	9.7	110 - 200
			$WH \rightarrow WW^+W^-$ (tri-leptons with 1 $\tau_{\rm had}$)		9.7	130 - 200
		5	$ZH \rightarrow ZW^+W^-$ (tri-leptons with 1 jet, ≥ 2 jets)		9.7	110 - 200
		D	$H \to \tau^+ \tau^-$ (1 jet)+(≥ 2 jets)	$H \rightarrow \tau^+ \tau^-$	6.0	100 - 150
			$H \to \gamma\gamma 1 \times (0 \text{ jet}) + 1 \times (\geq 1 \text{ jet}) + 3 \times (\text{all jets})$	$H \rightarrow \gamma \gamma$	10.0	100 - 150
0			$H \to ZZ$ (four leptons)	$H \rightarrow ZZ$	9.7	120 - 200
at	bb					
6	\sim	1				
Ĕ	ww					
.						
a						
ي ق		\setminus /				
- 0.1				т	· ·,	
			Channel	L	$\frac{1}{(n-1)}$	m_H range
		λ / 1			(fb 1)	(GeV/c^2)
			$WH \rightarrow \ell \nu bb$ (4 b-tag categories)×(2 jets, 3 jets)	·· · · ·	9.7	90-150
			$ZH \rightarrow \nu\bar{\nu}bb$ (2 b-tag categories)	$H \rightarrow bb$	9.5	100-150
		$\langle \rangle \rangle$	$ZH \rightarrow \ell^+ \ell^- bb$ (2 b-tag categories)×(4 lepton categories)		9.7	90–150
			$H \to W^+ W^- \to \ell^{\pm} \nu \ell^+ \nu$ (0 jets,1 jet, ≥ 2 jets)		9.7	115 - 200
10-2	· / \		$H + X \rightarrow W^+ W^- \rightarrow \mu^+ \nu \tau^{\pm}_{had} \nu$		7.3	115 - 200
			$H \to W^+ W^- \to \ell \bar{\nu} j j$ (2 b-tag categories)×(2 jets, 3 jets) H	$\rightarrow W^+W^-$	9.7	100 - 200
			$VH \to e^{\pm}\mu^{\pm} + X$		9.7	100 - 200
1	/ 70		$VH ightarrow \ell\ell\ell + X$		9.7	100 - 200
1	/ 11 21		$VH \to \ell \bar{\nu} j j j j$ ($\geq 4 \text{ jets}$)		9.7	100-200
			$VH ightarrow au_{ m had} au_{ m had} \mu + X$	$T \rightarrow \tau^+ \tau^-$	8.6	100 - 150
			$H + X \rightarrow \ell^{\pm} \tau_{\text{had}}^{\mp} jj$	± ' ' ' '	9.7	105 - 150
10-31	00 120 140	160 180 200	$H \rightarrow \gamma \gamma$		9.6	100-150
		Higgs Mass (GeV/c^2)				

MICHIGAN STATE

final Tevatron Higgs combination

- Observed significance 3.0 s.d. at mH = 125 GeV/c^2
- Coupling measurements consistent with SM

Testing Higgs boson spin/parity

- Spin/parity of Higgs affects
 - Angles of decay products
 - cross-section behavior at threshold
 - s-wave for 0+: $\sigma_{\sim}\beta$ (SM)
 - p-wave for 0-: $\sigma_{\sim}\beta^{3}$
 - d-wave for $2+:\sigma_{\sim}\beta^{5}$
- pp → VH sensitive "threshold" effects
- Differential cross sections depend strongly on JPC of new particle
- Re-use published
 VH → Vbb analyses
- results later this summer

Conclusions/Outlook

- Tevatron physics impact
 - Top quark discovery, top and W boson mass measurements
 - First measurement of many cross sections and resonances
 - Higgs coupling to fermions
 - Limits on numerous new physics particles and interactions
 - Established hadron collider methods and analysis techniques
- Tevatron data analysis still providing important results
 - Expect ~100 more papers
- Unique collider provided precious dataset
 - CP symmetric collider at the highest energies
 - Well understood detectors
 - Higgs spin/parity tests
 - Follow up on anomalies
- Tevatron legacy measurements
 - Cross section measurements
 - Precision measurements of m_W and m_{top}
 - CP asymmetries

Thanks!

- DØ and CDF collaborations
- Physics coordinators
 - Bob Hirosky, Rick van Kooten, Jon Wilson,
- Previous Tevatron speakers
 - Costas Vellidis, Andreas Jung, Bob Hirosky
- Fermilab Result of the week
 - Tevatron physics for the informed public
- CDF physics results: <u>http://www-cdf.fnal.gov/physics/physics.html</u>
- DØ physics results: <u>http://www-d0.fnal.gov/Run2Physics/WWW/results.htm</u>