Modular Cavity Status

- 168 k\$ of the 229 k\$ estimated cost has been spent
- Only major parts still in fab are the waveguide channels and main body
- Expect to be on budget and meet the Sept 30 completion date.
- Daniel Bowring coordinating FNAL/SLAC interface

All Angle Cavity

- Build an 805 MHz coaxial cavity such that
 E_rf is at all angles relative to the applied external magnetic field, H_ext
- Map azimuthal breakdown dependence to assess E_rf x H_ext effects

Chris Adolphsen, Chris Nantista and Faya Wang SLAC

Inspired by Our X-band (11.4 GHz) Dual Mode Cavity

Designed to study effect of pulse heating on breakdown rate – excite two modes, TE011 (H only) and TEM3 (E and H) through two ports to vary the pulse surface heating for a fixed surface electric field (~ 200 MV/m)

TEM3 Electric Field

50 µm

In this case, choose inner radius, r1 = 2.34 in and outer radius, r2 =5.6 in so have same stored energy as Modular Cavity and same 805 MHz frequency

Match to Existing Waveguide (Beta ~ 1)

Coaxial Cavity Design Options

 $r_2 = 5.600''$ (fixed for size constraints) l = 7.331'' (½-wavelength)

	<i>r</i> ₁	U/U _{pillbox}	$P_{\rm d}/P_{\rm d, pillbox}$	Q ₀	$E(r_{2})/E(r_{1})$
initial choice:	1.000"	0.360	0.527	17,735	0.179
fix dissipated power:	1.674"	0.708	1	18,355	0.299
fix stored energy:	2.342"	1	1.475	17,585	0.418

Use Acoustic Sensors to Map Azimuthal Breakdown Distribution

Acoustic Emission Sensor:

100 KHz – 1 MHz (speed is 3 mm/us) Non-directional SLAC-built PZT piezo

SMA connector

Doug McCormick

6/24/02

Experimental Issues of High Power Operation NLCTA – Marc Ross

13

TTF RF Gun Breakdown Localization

RF Breakdown in Gas Filled Cavities

Chris Adolphsen and Faya Wang

SLAC

Muon HPRF Cavity N2 Breakdown Threshold

Figure 2: Observed breakdown as a function of gas pressure in copper electrodes with various gases.

 $E/p \sim 20 V/cmTorr, E = E_p/sqrt(2)$

$$\alpha = 8.8 \exp(-275 \, p/E)$$

$$v_c = 4.05e9 \, p$$

 $v_i = 4.35e5\alpha$ Ionization rate

At pulsed breakdown threshold, diffusion

[1] A. D. MacDonald, "Microwave Breakdown in Gases", John Wiley & Sons, Inc., 1966.

Muon HPRF Cavity H2 Breakdown Threshold

Figure 2: Observed breakdown as a function of gas pressure in copper electrodes with various gases.

 $E/p \sim 20 V/cmTorr, E = E_p/sqrt(2)$

 $\alpha = 5.1 \exp(-139 p/E)$

At pulsed breakdown threshold, diffusion loss rate << ionization rate

17

Forty Meter 'Big Pipe' Test Setup

Operated 100+ hours breakdown free at field levels that would be seen in the ILC KCS with the beam current upgrade

Surface Electric Field in 90 Degree Bend

Equivalent to 72 MW TW in WR650 !

Breakdown Rate at Various N₂ Pressures

Dotted lines: Predicted electron growth rate in the gas normalized to the 18 psig data

Faya Wang