Modeling cooling in HPRF cavities including atomic physics processes

Roman Samulyak

Dept. of Applied Math. & Statistics, Stony Brook University Computational Science Center, Brookhaven National Lab.

うして ふゆう ふほう ふほう うらつ

HPRF cavity experiments

Figure: Schematic of HPRF cavity

- Dense hydrogen gas filled RF cavity has been proposed for muon beam phase space cooling and acceleration
- Proton beam: 400 MeV, H_2 gas: P = 200 bar, $\rho = 10^{21}$ cm⁻³
- External electric field: 20 MV/m, f = 900 MHz; 10 T external magnetic field

Critical Issues in HPRF cavity experiments

- RF power loading due to beam-induced gas effects
 - Incident particles produce many electron-ion pairs
 - Electrons transfer RF energy into hydrogen gas via interactions (10¹³ Hz collision frequency, ps-time scale for equilibrium)
 - Deviation of predictions from experimentally measures values
- Electronegative gas effect
 - ▶ Dry air containing 20% of O₂ was used
 - ► O₂ molecules captured ionized electrons and formed heavy negative ions
 - Residual electrons also remained in test cell
 - ► Experiments suggested that the electron capture by *O*₂ takes place via three-body reaction

$$O_2 + e + M \rightarrow O_2^- + M$$

Plasma Processes in HPRF cavity

 Energy loss of incident particle by ionization can be described by the Bethe-Bloch formula

$$\frac{dE}{ds} = 4\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \left(\frac{1}{\beta^2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - 1 - \frac{\delta(\beta)}{2\beta^2} \right),\tag{1}$$

Atomic processes

$$p + H_2 \rightarrow p + H_2^+ + e^-,$$

 $H_2^+ + 2H_2 \rightarrow H_3^+ + H_2 + H,$
 $H_3^+ + e^- \rightarrow 3H.$

• In the case of O_2 presence,

$$O_2 + e + M \rightarrow O_2^- + M$$

Intrinsically multiscale problem: relevant time scales change from ps to several µs.

Algorithms for EM-PIC with Atomic Physics

- Finite Difference Time Domain
- PIC approximation for charges
- Rigorous charge conservative method
- Symplectic explicit solvers (Boris scheme), 2nd order accurate
- Physically relevant boundary conditions
- Probabilistic algorithm for atomic physics
- Parallelization for traditional and multicore supercomputers

うして ふゆう ふほう ふほう うらつ

FDTD with Particles: Cloud-in-Cell method

• Uniform charge density cloud.

Figure: Cloud-in-Cell method concept and computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rigorous charge conservative method

Figure: Computation in two cells and three cells

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

PIC Method for Electromagnetic Problems

Figure: Computation sequence along time step

Figure: Processing flow in a time step of electrostatic problems

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Boundary conditions

- Regular Boundary
 - Open Boundary: Absolving Boundary Condition by using Perfectly Matched Layer (PML) (In progress).

- Superconducting Boundary (Implemented in the current code)
- Irregular Boundary (implemented in a serial FDTD code)

・ロト ・四ト ・ヨト ・ヨト 三日

Figure: RF cavity

Code Structure

- C++, Object-Oriented Design
- Main components
 - FieldSolver: solves Maxwell's equations using FDTD
 - ParticleMover: propagate particles and implements rigorous charge conservation method

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- Visualization: FieldViewer, ParticleViewer (parallel data rendering using Vislt)
- TimeController: control above objects
- All components have passed careful verification tests

Parallelization Methods: Field Solver

- 3D parallel domain decomposition for solving Maxwell's equation
- Well balanced computation dominated problem
- Good weak scaling to thousands of processors on BG/P
- Hybrid parallelization method for multicore supercomputers (BG/P) using MPI and OpenMP
 - Gives only several percent of the performance increase for moderate-size problems
 - Is beneficial only if the MPI communication time is bigger than the computation time

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Parallelization Methods: Particle solver

- Parallel particle decomposition is independent on their geometric location
- Particles in a parallel computing node can exist anywhere in the computational domain
- Very good load balance of computation
- Communication cost becomes high if the computational mesh is 128³ or larger
- We have reduced communications by using ideas from parallel sparse matrix storage algorithms

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Code Validation

- Step 1: Validation of FDTD solver without charges
 - Comparison with exact analytical solutions for rectangular cavities
 - Second order convergence
 - Good weak scalability to thousands of processors on BG/P

うして ふゆう ふほう ふほう うらつ

Step 2: Validation of EM-PIC code was performed using electrostatic interaction and space charge problems

Validation of Embedded Boundary Method

Figure: "Irregular boundary" can be obtained by simply rotating rectangular cavity with respect to the grid. Advantage: exact solution exists. Stair-case approximation (left) and EBM (right) for rectangular cavity.

grid size	EBM convergence order, $\frac{\log e_1/e_2}{\log h_1/h_2}$
16*16*16	NA
32*32*32	1.25
64*64*64	1.47
128*128*128	1.42

Previous simulation of muon beams in absorbers

- Muon bunch propagates in plasma cloud
- Constant particle number: ionization and recombination is neglected
- Muon bunch: 10^{12} particles, $\sigma_x = \sigma_y = 0.05$, $\sigma_z = 0.67$
- ▶ lon / electron cloud: 10^{12} pairs, $\sigma_x = \sigma_y = 0.1$, $\sigma_z = 1.3$
- Muon beam has initially zero emittance. We study the muon scattering as the bunch propagates through plasma

Preliminary simulation of positive muon beam in absorbers

Figure: Muon bunch in absorber

・ロト ・ 何 ト ・ ヨ ト ・

 $\equiv \mathbf{b}$

Preliminary simulation of negative muon beam in absorbers

Figure: Muon bunch in absorber

・ロト ・個ト ・モト ・モト

Muon Scattering on Plasma

Muon bunch location	Transverse vel.	Longitudinal vel.
-6	2.678E+04	2.6376E+08
-3.2	2.692E+05	2.6356E+08
0.3	5.373E+05	2.6334E+08
2.5	8.415E+05	2.6307E+08
5	1.140E+06	2.6268E+08

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Implementation of atomic physics processes in bean induced plasma

- Each macroparticle has extra degree of freedom: the life time (depending on state)
- Multiple species of particles are supported
- The energy loss of each incident macroparticle is calculated by integration the Bethe-Bloch formula along the particle trajectory ∆E = N_p ∫ f(v)ds
- At each time step, ion electron pairs are created along the proton macroparticle path by assigning them random direction velocities corresponding to their initial energy

Implementation of atomic physics processes in bean induced plasma (cont.)

- ► H₂⁺ is transformed into H₃⁺ ion on picosecond time scale. This simply requires changing the mass of the ion macroparticle and re-setting its internal time in the data structure
- In pure hydrogen, lifetime of electrons before recombination is very long, µs

- Electron capture by O_2 represents intermediate time scale
- Problem of electron mobility in high pressure gas

Current simulations (in progress)

Plasma loading in pure hydrogen HPRF cavity

- Run 1: simulate detailed atomic physics and plasma formation as proton beam passes through RF cavity (ns time scale)
- Run 2: use input from step 1 and simulate long term dynamics (µs) of plasma in external fields using statistical models for electron dynamics
- Electronegative gas in HPRF cavity
 - ► Add atomic transformation involving O₂ and resolve fast capture of electrons by O₂ and dynamics of residual electrons

うして ふゆう ふほう ふほう うらつ