SSR1 Superconducting Resonator

Juan Reyes González Interamerican University of Puerto Rico, Bayamón Campus Mechanical Engineering Department SIST Program August 5, 2013

SSR1 & PXIE

SSR1 Main Components

- Niobium Cavity
- Helium Vessel made from SS316L
- Oryomodule at 2K
- 325MHz Operating Frequency

Frequency Tuner

- Actuation System
- Main Arms
- Fulcrum

My Contribution

Main Arms Stiffness Analysis

Simulation Description

Simulation Description

Simulation Done Using ANSYS

Measure Stiffness

Deforming the Main Arm with an Applied Force

Linear Elastic Analysis (Elastic Zone)

Hooke's Law: k=F/x

Symmetry Plane

Why Create a Symmetry Plane?

Reduces The Physical Size of The Model
Reduces The Simulation Time
Makes The Model More Stable for Static Analysis By Removing a Degree of Freedom

Symmetry Plane

Degree of Freedom

Constraints

0 Displacement y-axis

0 Displacement x-axis

Mesh Selection

Selected Mesh

Contains 16,558 number of elements

Sunday, August 4, 13

Mesh Selection

Mesh Refinement

Convergence Study

Force

200N Force Simulation.

IOON Force was placed because of symmetry.

Results

Max Directional Deformation=0.0059436mm
Deformation in Elastic Zone
Hooke's Law: k=F/x
Stiffness: k=33.6kN/mm (previous prototype k=30kN/mm)

Deformation at Os

A: Static Structural Directional Deformation Type: Directional Deformation(Y Axis) Unit: mm Plane6 Time: 0 7/29/2013 10:45 AM				ANSYS R14.5
0.0059436 Max 0.0052665 0.0045894 0.0032353 0.0025582 0.0018811 0.001204 0.00052691 -0.00015019 Min				
	0.00	100.00	200.00 (mm)	Y
	50.00	150.00	,	

Final Deformation

Bellows Experiment

Experiment Details

Experiment in Elastic Region
Measure The Stiffness
Adding Weights On Top of The Bellows
Measure The Directional Deformation
Calculate The Stiffness Using Hooke's Law: k=F/x

Equipment

Weights Approx. 7.6kg(x9)

Dial Indicators (x3)

Bellows

Experiment Layout

Experiment Layout

- 3 Blocks=223.67N
- 6 Blocks=447.16N
- 9 Blocks=670.65N

Results

Maximum Stiffness=588.235N/mm All Data Stiffness=526.316N/mm Minimum Stiffness=454.545N/mm Estimated Stiffness=526.316±67N/mm

Antenna Flange

Aluminum 6062

 Welding Processes of the Helium Vessel

Detects Shrinkage

Measures Temperature

Purges the Helium Vessel with Argon

Antenna Flange Sketch

Antenna Flange Mounted on Helium Vessel

Tuner Stand Prototype

Tuner Stand Prototype

Tuner Stand Prototype

Conclusion & Future Work

Reasonable Results From Simulations and Test
Improving Bellows Experiment
Improving The Tuner Stand Design

Acknowledgments

Leonardo Ristori
Donato Passarelli
Derek Plant
The SIST Program Committee
Dr. Davenport