Block Instrumentation for the Far Detector at Nova

Presented by Didier Muvandimwe Hendrix College, Conway, AR

> Intensity Frontier, PPD Supervisor: Martin Frank,

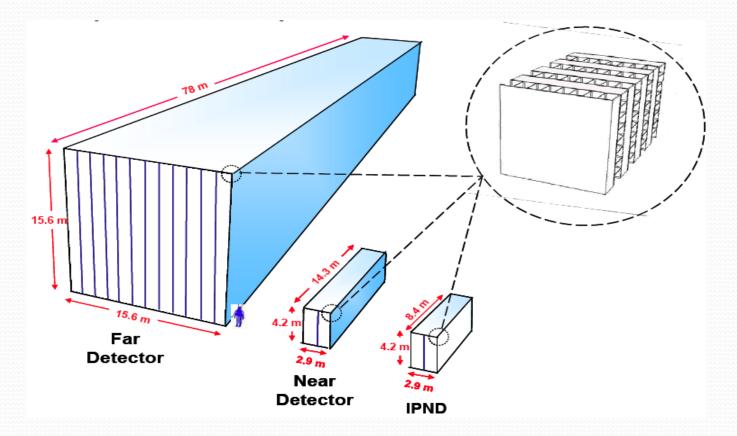
8/5/2013

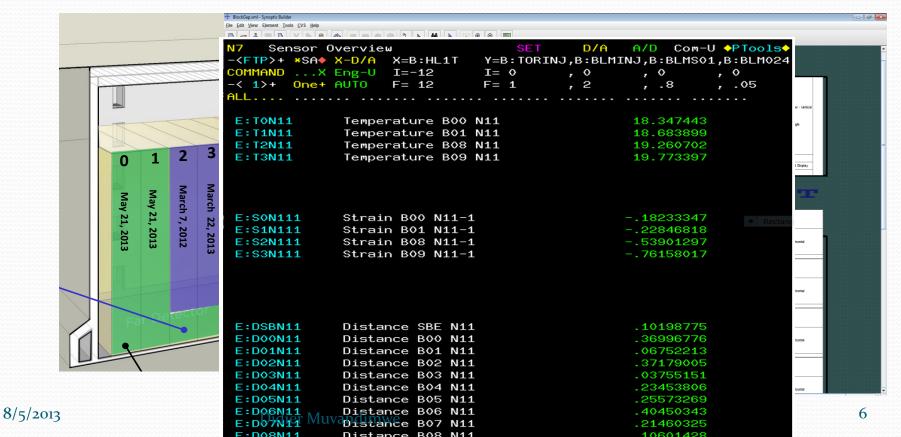
Outline

- Neutrinos and Nova
- Instrumentation of blocks
 - Measure distance and strain on blocks
- Displaying the parameter readings in Synoptic
- Results and conclusion

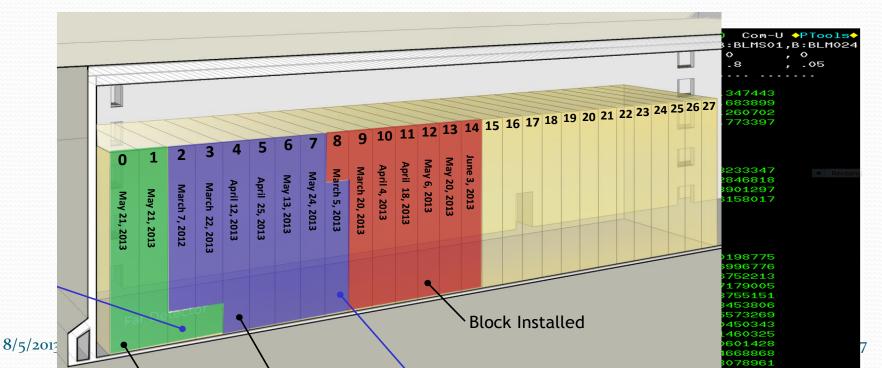
Neutrinos and their properties

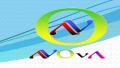
- Muon, tau, and electron neutrinos
- Have a mass, but very small
- Abundant particles, rare interaction with other particles
- Difficult to detect
- Need large detectors


- Oscillation of *muon* neutrinos to *electron* neutrinos
- Ordering of the neutrino masses
- Symmetry between matter and antimatter


Near detector and Far detector

- ND: 222 tons, and FD: 14 ktons
- Far Detector: 28 Blocks, Each block: 384 PVC modules


Block instrumentation for the Far Detector

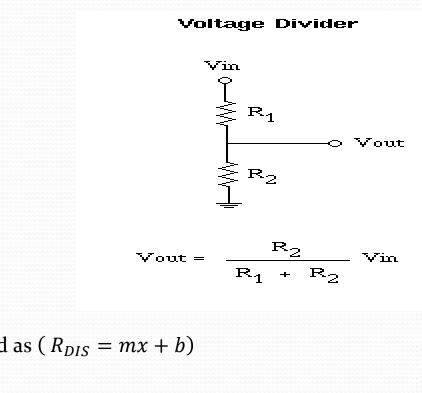

- Measuring *distances* between blocks and *strain* on some blocks
- Using Synoptic to build displays (GUIs)
- Monitoring these parameters in the Nova control room

- 27 gaps (B00/B01 gap, B01/B02 gap,... B15/B16 gap,.....B26/B27 gap)
- Each Gap: 24 sensors: 18 north side and 6 south side.
- Each sensor has a name (sensor variable),
- Variable broadcasted through ACNET
- Variable imported from ACNET to display in Synoptic

Distance sensor Variables

- DIS- B# # N/S XY
- B:[Block], ##: Block number, N or S: North or South side sensor, X or Y: horizontal and vertical position

	B01-S61	B <mark>01</mark> -S51	B <mark>01</mark> -S41	B <mark>01</mark> -S31	B01-S21	B <mark>01</mark> -S11		
B <mark>00</mark> -N19							B <mark>00-N2</mark> 9	
B <mark>00</mark> -N18							B00-N28	
B <mark>00</mark> -N17							B00-N27	
B <mark>00</mark> -N16							B00-N26	
B <mark>00</mark> -N15							B00-N25	
B <mark>00</mark> -N14								
B <mark>00</mark> -N13		Blo	ck 🛛	0/0	1 G	an	B00-N23	
B <mark>00-N12</mark>		DIU		010	I U	۳Y	B00-N22	
B <mark>00-N1</mark> 1							B00-N21	


Strain sensor variables

- Sensor variables: *S*-#-*N*/*W*-*XY*-1/2/3.
- *S* : Strain, N/W: North or West, X/Y: Horizontal or vertical position, gauge number.

Γ	Block Digit Number				S1N11	S1N21	S1N31	S1N41	S1N51	S1N <mark>6</mark> 1
	0	B00 B01 B08			<u>S1N12</u>	S1N22	S1N32	S1N <mark>4</mark> 2	S1N52	S1N <mark>6</mark> 2
	3 4 5	B09 B18 B19			S1N13	S1N23	S1N <mark>3</mark> 3	S1N43	S1N53	S1N <mark>6</mark> 3
	6	B19 B26 B27			S1N14	S1N24	S1N34	S1N44	S1N54	S1N64
	S1	W11	S 1	W21						
	S1	W12	S1	W22						
6/5/2013	S1	W13	S1	W23 Didier Muvan	dimwe					

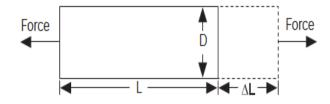
How to measure the distances

- Changing resistor (R_{DIS}) and a known resistor(R_{vD}) of 20 K Ω
- Voltage divider across R_{DIS} and R_{vD}

•
$$V_{out} = V_{in} \cdot \frac{R_{VD}}{R_{DIS} + R_{VD}}$$
(1)

• $\frac{V_{out}}{V_{in}} = \frac{R_{VD}}{R_{DIS} + R_{VD}}$, R_{DIS} expressed as ($R_{DIS} = mx + b$)

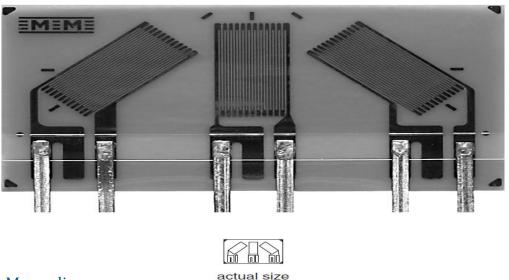
 $\frac{V_{out}}{8/5/2013^{in}} = \frac{R_{VD}}{(mx+b)+R_{VD}}$ (3) Didier Muvandimwe



$$X = \frac{1}{V_{out}} \left[\frac{1}{m} \cdot V_{in} \cdot R_{VD} \right] - \left[\frac{1}{m} \cdot V_{in} \cdot R_{VD} \right] (4)$$

• Letting,
$$C = \left[\frac{1}{m} \cdot V_{in} \cdot R_{VD}\right]$$
, and
 $D = \left[\frac{1}{m} \cdot V_{in} \cdot R_{VD}\right]$
Then, $X = \frac{1}{V_{out}}[C] + [D]$ (5)

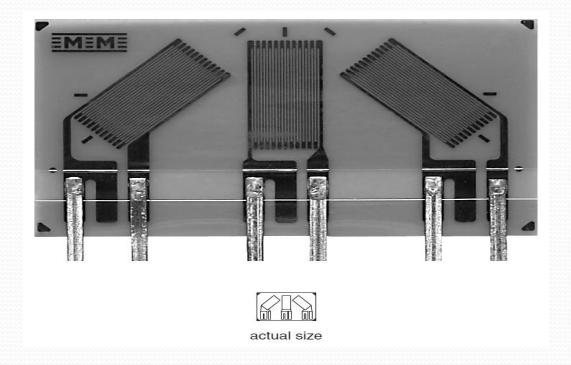
- **Strain** is the amount of deformation of a body due to a force an applied force. Positive (tension) or negative (compressive)
- $\varepsilon = \frac{\Delta L}{L}$ (1), in micro-strain ($\mu \varepsilon$).
- Use of Strain gauge to measure strain.


12

• Gauge Factor (GF): the fundamental parameter of the strain gauge.

Didier Muvandimwe

• Measures the material *sensitivity to the strain. i.e. GF=2 for nova (metallic strain) gauges*


• GF=
$$\frac{\Delta R/R}{\Delta L/L} = \frac{\Delta R/R}{\varepsilon}$$

How to measure strain

• 3 gauge strain sensor or rosette ($\varepsilon_1, \varepsilon_2, \varepsilon_3$)

• Connecting a strain gauge to a modified *Wheatstone bridge*

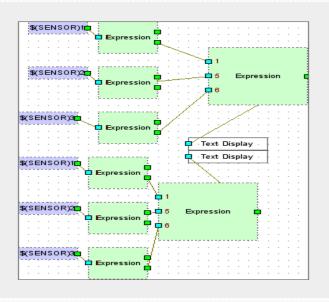
• Slight modification to a quarter bridge circuit

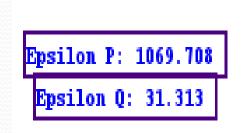
• Setting $R_1 = R_2$, $R_3 = R_G$, and the GF equation, $\Delta R = R_G$. *GF*. ε .

•
$$\frac{V_0}{V_{EX}} = -\frac{GF.\varepsilon}{4} \left(\frac{1}{1+GF.\frac{\varepsilon}{2}}\right)$$
(7)

• From (7), letting
$$V_r = \frac{V_0}{V_{EX}}$$
, then

•
$$\varepsilon = \frac{-4 \cdot V_r}{GF(1+2V_r)} (8)$$

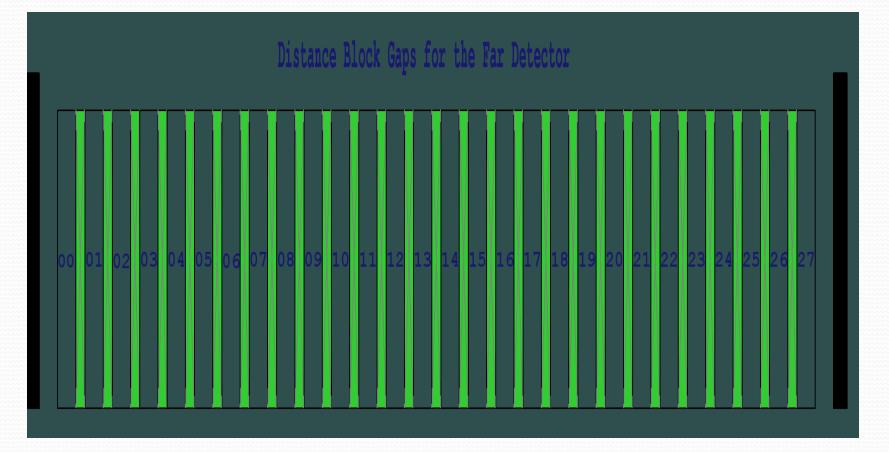

• Measuring and reading $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$.

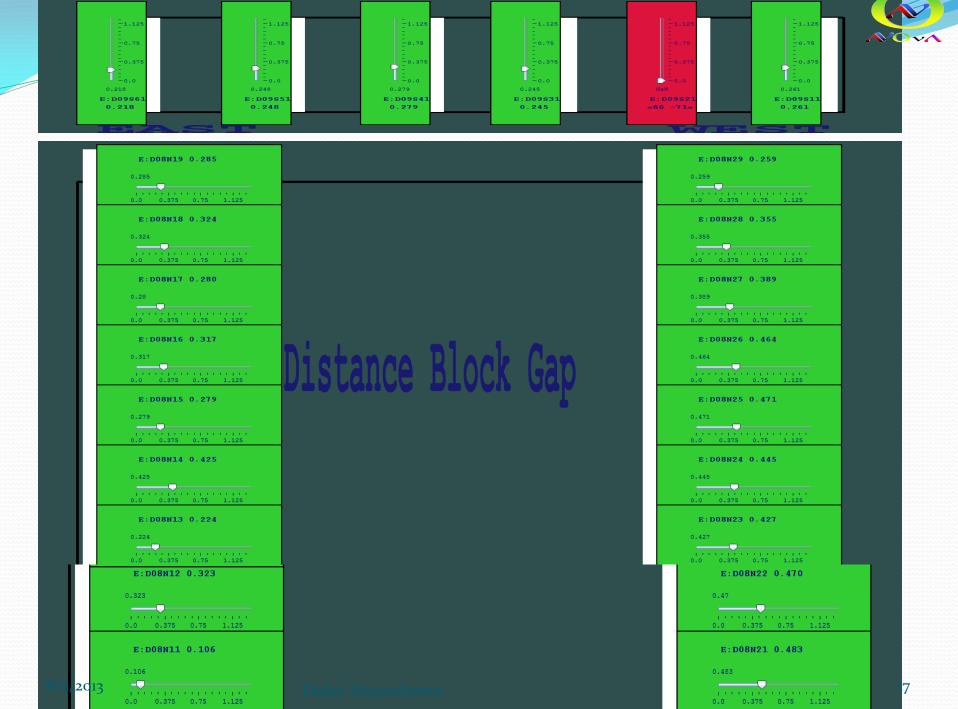

• However, displaying principal strain $(\varepsilon_p, \varepsilon_q)$

$$\square \varepsilon_p = \frac{\varepsilon_1 + \varepsilon_2}{2} + \frac{1}{\sqrt{2}}\sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2}$$

$$\Box \varepsilon_q = \frac{\varepsilon_1 + \varepsilon_2}{2} - \frac{1}{\sqrt{2}}\sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2}$$

 $(\varepsilon_p, \varepsilon_q)$ are displayed in Synoptic





Distance readings with alarms

<u>http://www-</u>
 <u>bd.fnal.gov/synoptic/display/Nova_Far/Displays/BlockGapOvervie</u>

Strain readings $(\varepsilon_p, \varepsilon_q)$

• Rosette $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$

Epsilon P: 594.382	Epsilon P: 1057.427	Epsilon P: 155.044		
Epsilon Q: 120.456	Epsilon Q: 784.706	Epsilon Q: -658.103		
Epsilon P: 769.939 Epsilon Q: -65.293	Epsilon P: 789.637 Epsilon Q: 420.785	Epsilon P: 447.351 Epsilon Q: -622.890		
				Block
Epsilon P: 1054.839 Epsilon Q: -73.862	Epsilon P: 1529.284 Epsilon Q: -50.685	Epsilon P: 801.477 Epsilon Q: -183.355	Digit	Number
Epsilon P: 2682.890	Epsilon P: 911.322	Epsilon P: 961.000	0	B00
Epsilon Q: -9186.190	Epsilon Q: 72.146	Epsilon Q: 564.032	1	B01
Epsilon P: 1031.408	Epsilon P: 1135.349	Epsilon P: 1798.925	2	B08
Epsilon Q: -20.760	Epsilon Q: 227.055	Epsilon Q: 235.281	3	B09
NaN	Epsilon P: 740.131	Epsilon P: 616.559	4	B18
NaN	Epsilon Q: 446.509	Epsilon Q: 254.791	5	B19
Epsilon P: 16.081	Epsilon P: 1099.203	Epsilon P: 840.242	6	B28
Epsilon Q: -62.967	Epsilon Q: 282.000	Epsilon Q: -985.656	7	B29
Epsilon P: 152.682 Epsilon Q: -165.818	Epsilon P: 1102.508 Epsilon Q: 527.168	Epsilon P: 213.785 Epsilon Q: 94.936		

Conclusion and Future work

- Distance readings displays have been completed
 - Easy control and monitoring in Nova control room
 - Knowing broken sensors, detect any issues with the sensors
 - Recognizing out of range (abnormal) readings
- Strain displays are in progress and continue to work on them
 - Overview for all 8 blocks with strain sensors on them
 - Have all strain readings as it is for the distance display

- Supervisor: Martin Frank
- Dianne Engram, and the entire SIST committee
 - Linda Diepholz
 - Mentors: Mccrory Elliott, and Bradly Verdant
- Fellow Interns

Questions?