

Daniel M. Kaplan

ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu

MAP Friday Meeting Fermilab 26 July 2013

- MICE overview
- Detector status
- Magnets & other equipment
- Software status
- Summary & outlook

 International Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory (RAL)

- International Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory (RAL)
- Has flexibility to test several absorber materials and optics schemes, incl. first 6D cooling demo
 Incl. first 6D cooling demo

(muon by muon)

measure emittance to 1‰

- International Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory (RAL)
- Has flexibility to test several absorber materials and optics schemes, incl. first 6D cooling demo
 TOF Calorimeters
 TOF Calorimeter II
 TOF
 TOF
 TOF
 TOF
 TOF
 TOF
 TOF
 TOF
 TOF
 TOF
 - SciFi solenoidal spectrometers measure emittance to 1‰ (muon by muon)
- Nutshell: under construction, program complete ~2020

~200 MeV/c

Steps of MICE

Steps of MICE

www.iit.edu

MICE Status | MAP Friday Mtg

Steps of MICE

www.iit.edu

I Want My Maypo!

I Want My MIPO!

www.iit.edu

MICE Status | MAP Friday Mtg

I Want My MIPO!

www.iit.edu

MICE Status | MAP Friday Mtg

MICE Beamline [RAL]

Installed 2007–8

• Works well

see M. Bogomilov et al., JINST 7 (2012) P05009

MICE Beamline

Installed 2007–8

• Works well

Decay Solenoid Area (DSA)

shielded against possible neutron spray from ISIS

see M. Bogomilov et al., JINST 7 (2012) P05009

D. M. Kaplan, IIT

Detectors & Performance

MICE Particle ID

- Need to suppress (to < 10^{-3} level) undecayed π in beam & decay electrons
- Performed using
 - 3 sets of TOF counters (Milan/Pavia/Geneva/Sofia),
 - 2 Cherenkov counters (U Miss/IIT/U Iowa)
 - KL sampling EM Calorimeter (Rome III), and
 - Electron-Muon Ranger (Geneva/FNAL/Trieste/Como)

MICE Particle ID

- Need to suppress (to < 10^{-3} level) undecayed π in beam & decay electrons
- Performed using
 - 3 sets of TOF counters (Milan/Pavia/Geneva/Sofia),
 - 2 Cherenkov counters (U Miss/IIT/U Iowa)
 - KL sampling EM Calorimeter (Rome III), and
 - Electron-Muon Ranger (Geneva/FNAL/Trieste/Como) due in Sept

In and workin

ime-of-Flight Counters

[Milan, Pavia, Geneva, Sofia]

• Setting $p_{D2} = p_{D1}$ gives $\pi/\mu/e$ calibration beam:

ime-of-Flight Counte

- [Milan, Pavia, Geneva, Sofia]
- Setting $p_{D2} = p_{D1}$ gives $\pi/\mu/e$ calibration beam:
- Can select "pure" μ beam by $p_{D2} = 0.5 p_{D1}$:

26 July 2013

10/26

ime-of-Flight Counte

- [Milan, Pavia, Geneva, Sofia]
- Setting $p_{D2} = p_{D1}$ gives $\pi/\mu/e$ calibration beam:
- Can select "pure" μ beam by $p_{D2} = 0.5 p_{D1}$:

- O(%) residual pions in MICE muon beam (to be suppressed via Cherenkov counters)
 - paper in preparation

www.iit.edu

TOF Emittance Analysis

- Emittance analysis without spectrometers (done because SS delayed):
 - PMTs at each end allow position interpolation via Δt to ≈ 1 cm
- TOFs thus measure x' to 18 mrad, y' to 5 mrad, p to $\approx 2\%$
- see D. Adams et al., <u>arXiv:1306.1509</u>
- Conclusion: beam well understood and suitable for MICE program
- Submitted for publication in EPJC

Simulation

Cherenkov Counters

[U Miss, IIT, U Iowa]

• 2 Cherenkov counters with high-n aerogel rad

ε Measur

Located in DSA, downstrear
 of Q9 & TOF0

beam eV/c

fADC Spectrum at Channel 3

EMR

[Geneva, FNAL, Trieste/Como]

26 July 2013

Under construction at U Geneva

Prototype already tested at MICE

• To be delivered & installed in Sept.,

commissioned with beam Oct.

SciFi Spectrometers

- Trackers complete & tested with cosmic rays
 - installation awaiting SS delivery

 Typical cosmic track

 $\vdash \text{Light yield} \approx 10 \text{ p.e.}$

Cosmic test setup

26 July 2013

Other Components

- US provides SS & CC magnets
 - Ist SS trained & mapped, shipping soon
 - 2nd soon ready for training
- UK providing FC status:
 - Ist FC completed, successful training in solenoid mode
 - flip-mode training problematic?
 - keep training as He & vendor permit
 - 2nd FC nearly ready

- US provides SS & CC magnets
 - Ist SS trained & mapped, shipping soon
 - 2nd soon ready for training
- UK providing FC status:
 - Ist FC completed, successful training in solenoid mode
 - flip-mode training problematic?
 - keep training as He & vendor permit
 - 2nd FC nearly ready

- US provides SS & CC magnets
 - Ist SS trained & mapped, shipping soon
 - 2nd soon ready for training
- UK providing FC status:
 - Ist FC completed, successful training in solenoid mode
 - flip-mode training problematic?
 - keep training as He & vendor permit
 - 2nd FC nearly ready

RFCC Modules [LBNL, HIT, U Miss]

- Design \approx done
- RF cavities built
 - Ist cavity at FNAL for MTA tests
 - much work on couplers, tuners & assembly procedure
- Coupling Coil fab in China (HIT, Qi Huan, SINAP) led by LBNL
 - Ist CC cold mass delivered, test at FNAL STF
 - o working on cryogenics issues

17/26

- Fabrication at YI2 (Oak Ridge)
 - both disks and wedges ordered
 - disks done, awaiting approvals for delivery to RAL (CRADA with STFC)
- Other solid absorbers also under consideration:
 - C,Al, polyethylene,...

- Fabrication at YI2 (Oak Ridge)
 - both disks and wedges ordered
 - disks done, awaiting approvals for delivery to RAL (CRADA with STFC)
- Other solid absorbers also under consideration:
 - C, Al, polyethylene,...

gap

Beampipe

- 4 used 2 MW triode supplies
 - 2 from LBNL, 2 from CERN
 - refurbishment in progress at DL
 - as of CM36, 1st tested at 1 MW
 - crowbar circuit improvements
 were needed for 2 MW test
- Installation plan devised
- LLRF design in progress
- TIARA test this year

RF Power [DL, LBNL, U Miss, U Strathclyde]

- 4 used 2 MW triode supplies
 - 2 from LBNL, 2 from CERN
 - refurbishment in progress at DL
 - as of CM36, 1st tested at 1 MW

!<u>NEWSFLASH</u>!

Begin forwarded message:
From: Andrew Moss <andrew.moss@stfc.ac.uk></andrew.moss@stfc.ac.uk>
Subject: Re: Fwd: 1.5 Megawatt
Date: July 5, 2013 5:03:24 PM CDT
To: MICE-RF-POWER@JISCMAIL.AC.UK
Reply-To: MICE RF power distribution system <mice-rf-power@jiscmail.ac.uk></mice-rf-power@jiscmail.ac.uk>

2MW from mice amplifier

Andy

Sent from my Windows Phone

- Liquid-hydrogen system successfully tested
 - uses hydride-bed H₂ storage

www.iit.edu

MICE Software

• G4MICE developed initially by Y.Torun (IIT)

G4MICE

MICF Software

- G4MICE developed initially by Y.Torun (IIT)
- Succeeded by MAUS (MICE Analysis User Software) framework
 - simplifies maintenance & use
 - strong emphasis on good
 documentation & thorough testing
 - making good progress but not all there yet
 - much to be done to be ready for Step IV!

B-Field Mitigation

- 2 concepts:
 - partial return yoke (PRY)
 - o suppress the fringe field at its source
 - "local" shielding
 - o shield (or move) each sensitive component
- PRY currently seems favored
 - local solution may be riskier: hard to identify all sensitive devices & assess their degree of sensitivity
 - SS delay leaves more time for PRY implementation

B-Field Mitigation

Concept

www.iit.edu

- Partial Return Yoke (a.k.a. "shield", PRY?)
- Concept presented at MICE CM 2012
- Shielding plates
 - wall thickness >10 cm
 - weight: 35t
- Performance
 - Reduces stray field outside of shield to 5-10 Gauss

H Witte. Step IV & VI: Local Flux Return. MICE CM 34, October 2012.

(Note: not to scale)

July 25, 13

• Engineering continues; review & decide in Sept.

3

B-Field Mitigation

• Review panel selected:

```
Tom Taylor, CERN – Chair (limited to 23/24<sup>th</sup> Sept) or 1/2<sup>nd</sup> October
```

```
Jim Clarke, AsTec - magnet group Division Head, (alternative chair to above)
```

```
Mark Hatch, CERN - experience of integration, services and safety in ATLAS
```

```
Ken Bell, STFC - Experience of CMS field mitigation problem on electronics
and hardware
John Thomasson, STFC - newly appointed Head of ISIS Accelerator Division,
replacing David Findlay
```

```
Mike Glover, STFC - Head of ISIS Electrical engineering
```

```
Martin Hughes, STFC - experience of ISIS electronics hardware
```

```
Vladimir Kashikin, FNAL - S/C magnet expert
```


MICE Outlook

- Beefing up
 - construction management: MIPO
 - & support staff: two integration scientists
- ... to focus on Step IV readiness
- Equipment coming together (SSs, AFCs, RFCCs...)
 - but there's a long road ahead!
 - to complete Step IV (proof of principle) by 2016
 - & Step VI (thorough study of transverse cooling) by 2020
 - with first cooling demo/MC validation in 2015
 - & first demo of 6D cooling (Step IV.1)
 - & possibly Step V in 2018

Upcoming meetings

(Alain's summary)

Upcoming MICE VCs

Thursdays:

11 July

8 August

5 September

Will feature magnetic mitigation issues in high place

10 October

Next collaboration meeting 6-8 November (dates confirmed) Can have a software workshop 4-5 November.

- -- 13 November RLSR
- -- 14 November MPB
- -- 15 November FAC