

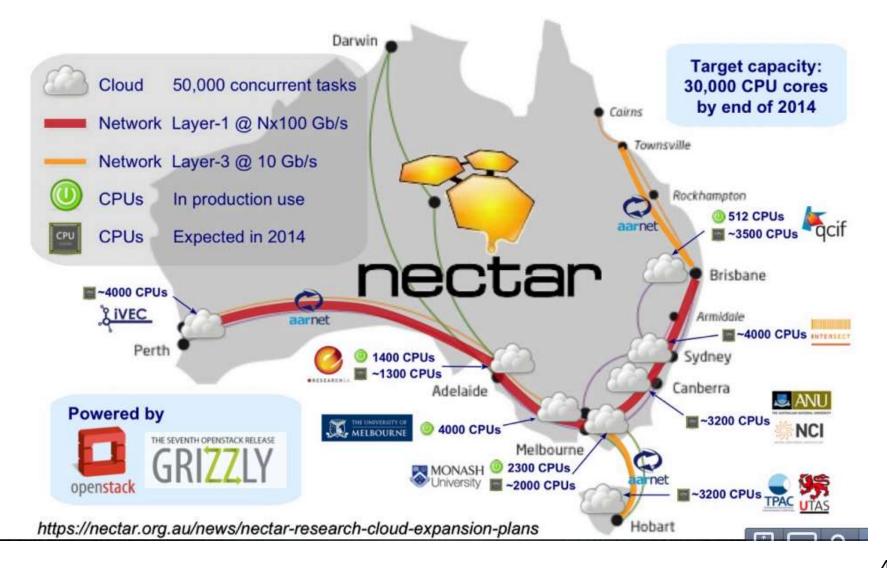
ARC Centre of Excellence for Particle Physics at the Terascale

Federating Australian HEP Research Storage Using XRootD

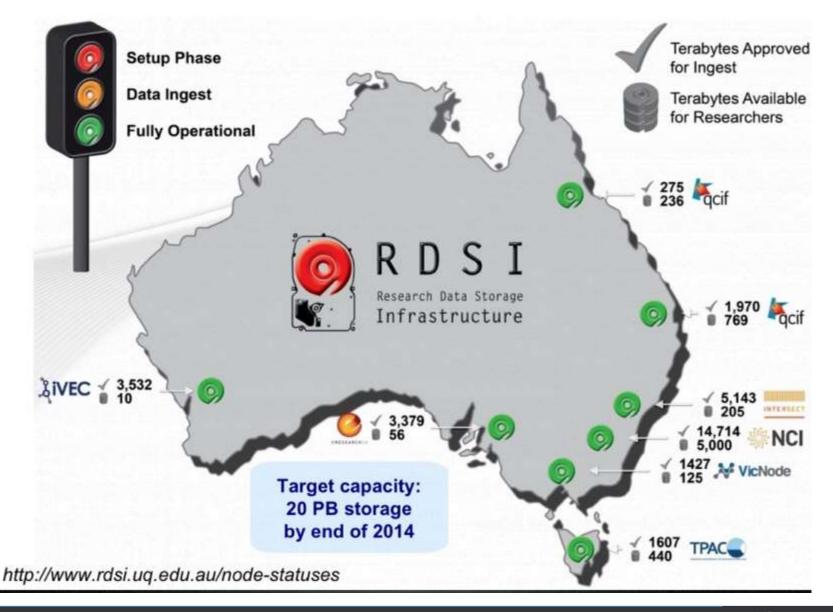
Federated Storage Workshop
Sean Crosby
Australia-ATLAS
Melbourne, Australia

Acknowledgements

- Antonio Limosani
- Tristan Bloomfield
- Doug Benjamin
- Wei Yang


Research Computing Team

Lucien Boland


- \$25million over 7 years from Aus Government
 - Join the HEP groups from Uni Melb, Uni Syd, Uni
 Adelaide and Monash Uni together for first time
 - Also first time experimentalists and theorists were joined
 - Approx 80 FTE academics, postdocs, PhDs and Masters students
 - Research Computing group (2 members so far) to maintain Australia-ATLAS and the local systems
 - Purchase and deploy new pledge for ATLAS
 - Keep hardware in warranty for local systems

Other government money

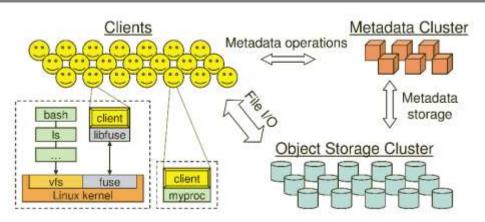
Other government money

Allocations

- Allocations are approved by a merit committee
- Factors include high importance, size of user community, how often dataset is accessed
- Clearly ATLAS compute and data fits all of these categories
 - We have been very successful in obtaining compute and storage
 - Have been allocated 700 cores and > 300TB so far (not all online yet)
 - 200cores used for Australia-NECTAR, 200 for Tier3, 200 for Belle2

- We buy commodity hardware (Dell, IBM, HP) for compute and storage
 - Run compute until it dies
 - Decommission storage after 3 years
 - Rate of decommission approx 240TB/year
- How best to use Govt equip and our decommissioned hw?

Access mechanism to provided storage


- All network based
 - Mostly NFS in VM
 - Some Openstack Cinder (iSCSI terminated on hypervisor, block device in VM)
 - No dedicated storage network (with 1 exception)
 - Each site is different
 - Different SLA
 - Different speed and breakdown
 - Different functionality (backups, replication etc)
 - Individual LUN limits at some sites

Our plan for storage

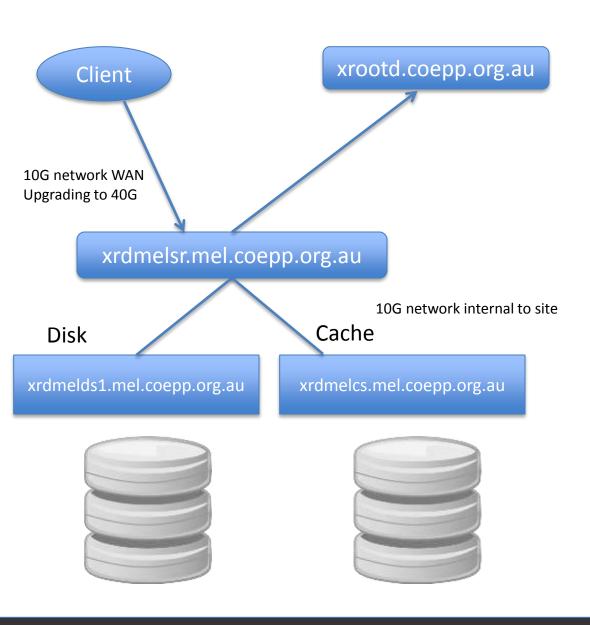
- Need /home and /data
 - Separate them for backups
 - /home backed up, /data not (limited backup space)
 - /home for scripts, unrecoverable data
 - /data for DQ2 downloads, user-gen data
 - Approx 40TB for /home, infinite space for /data

Home

- Use decommissioned hardware
 - RAID10 with 20% hotspares
 - Keep 30 drives for cold spares
 - CEPH (CEPHFS via FUSE)
 - Single location (Melbourne)
 - Mount on physical nodes, Cloud VMs
 - Working quite well so far
 - No major problems
 - Quite performant
 - Fault tolerant
 - Replica count = 2
 - To do
 - Get more users on
 - Install private network for replicas
 - Investigate SSD for journal

linux-mag.com

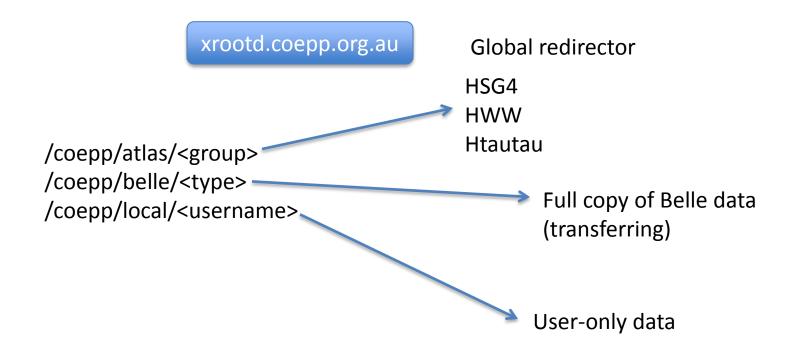
- Mostly experimentalists, but also non-neg theorists
 - Prefer POSIX-like FS
- Needs
 - Multiple sites
 - Pluggable
 - Performant
 - Fault tolerant
 - Not immutable
 - ROOT functionality a plus



- Lots of testing of distributed FS
 - Xtreemfs
 - dCache NFSv4.1
 - OrangeFS
 - FhGFS
- Most suffer from lack of reliability (Xtreemfs and OrangeFS especially), or lacks functionality (dCache – immutable – simply set up to test NFSv4.1 kernel speed)

xrootd

- Doug pointed us towards xrootd
 - Familiar with it from DPM
 - Initial configs from Doug and Wei
 - Initial idea for xrootd to be RO, writing done via NFS on WN
- Each site
 - Site Redirector (VM)
 - Disk server(s) (VM with NFS or Block storage)
 - Cache server (VM with NFS or Block)
- "Global" redir
 - VM
- Unix auth, xrootd user in LDAP, with appropriate group permissions (atlas, belle)



Global redirector

Same basic setup replicated to other sites using same puppet configs

Namespace

Initial results

- ROOT analysis job
- Input: 7 GB dataset containing 90K LHC ttbar events stored in TTree
- Output : histograms
- Cache turned off (site level and TTree)
- Results have yet to be replicated (they don't make much sense to me)

	Melb Disk	Syd Disk	Adl Disk
Melb CPU	00:13:35	02:49:12	04:08:23
Syd CPU	03:08:18	00:28:18	06:19:18
Adl CPU	03:55:09	06:06:22	00:38:08

Same job as before

	Syd Disk	Adl Disk
Syd CPU	00:28:18	00:32:37
Adl CPU	00:42:35	00:38:07

- Clearly cache works, but not as we like or expect
 - Xrootd cache server responds that it has the file, even though it doesn't
 - Stage-in script (provided on Twikis) had bugs (fixed)
 - Copies the file in, then gives it to the client
 - Copy problems result in inaccessible file
 - Given the network between sites is great, is that best?

TTreeCache

- Turn off site caches
- Repeat with 100MB TTreeCache

	Mel Disk	Syd Disk	Adl Disk
Mel CPU	00:08:43	00:29:31	00:17:34
Syd CPU	00:23:34	00:08:51	00:22:30
Adl CPU	00:20:09	00:29:49	00:09:02

- TTreeCache is much more important
 - Will keep the cache servers, but will reevaluate

Problems

- FUSE
 - Xrd FUSE mount extremely slow
 - Is takes O(mins) to finish
 - Need cns?
 - Cns confused by NFS writes
- Enable xrootd writes
 - Melb DS had data already
 - Not in new directory structure
 - Tried to force it by config change on that DS
 - Oss.localroot: disk space reporting wrong
 - All.export: xrdcp would segfault across federation
- Unresponsive SR or DS caused slowdowns for everyone
- Syncing DS directories a problem
 - Mel now has 3 DS (due to LUN size limits)
 - Xrd mkdir only mkdir on individual DS

Further Work

- Next step to implement cns and FUSE mount
- Been investigating pyxrootd
 - Get around most problems with theorists?
- Education
 - Tier3 and Tier2 level our DPM has been xrootd enabled for ever
 - Stop the double download
- Migration of existing data

WebDAV

- Fed WebDAV (Fabrizio UGR) is very exciting for us
 - Davix in ROOT big advantage
 - Dynamic federation
 - Browse dir structure using browser
 - Standards (protocol and servers)
- Will install apache/mod_dav/ugr in cohabitation with xrootd for near future

Thank You scrosby@unimelb.edu.au