

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Data & Storage Services

Quantitative storage analysis

Dirk Duellmann, CERN IT

Federated Storage Workshop, 21. April 2014, SLAC

Department

Statistical log analysis @ CERN

- Data sources
 - EOS logs per file access
 - some 20 metrics per open/close sequence
 - -very similar to xroot f-Stream (collected by Matevz)
 - LSF another 20 metrics per job
 - cpu, wall, os, virt/phys, RSS, swap, local I/O
 - Dashboards
 - experiment side classification and (in some cases) event rate
- Goals
 - can we see / quantify effects of main system level parameters ?
 - network distance, OS, virt/phys, Intel/AMD, TTreeCache use etc.
 - predict impact of an increased fraction remote/federated access
 - measure correlation / causal relationship between IO and CPU usage
 - note: this is done passively (no probe jobs) -> describes real job mix
- along the way..
 - spot unintended use, cost of internal balancing/draining
 - statistically detect component malfunctions
 - aggregates per server, protocol, buffer size etc.

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Plots are easy... Analysis & conclusions can be work

- Many cross-checks could be made
 - but only after basic understanding and relation between IO and CPU and user metrics is established
- Some non-trivial aspects
 - cross-matching (eg based on user and job identity) between different monitoring sources is complex and can currently only be done for a subset of all jobs
 - OS / virtualisation / location are already correlated in large scale setups
- Popular metrics can be tested for their predictive value
 - For example: CPU/Wall = "CPU-efficiency"
 - or is it just how CPU-bound a particular job/IO mix is?
 - CMS/ATLAS jobs running from Wigner show significantly increased "CPU-efficiency"
 - …but, is this good or bad news?
 - hint: LHCb and Alice show decreased values

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

A proposal to experiments

- CERN**IT** Department
- Event/s is the relevant metric for optimisation ...
 - ... but only well defined within one job type
- Short term:
 - check if evt/s and "CPU-efficiency" are correlated in a way which is useful for optimisation
 - for a "representative" workload compare both metrics
 - RH5 <-> RH6 (phys)
 - RH6(phys) <-> RH6 (virt)
 - RH6(virt @ Geneva) <-> RH6 (virt @Wigner)
- Maybe these can be extracted from existing/new HammerCloud runs

Fully Remote Access Impact?

- One example from new LSF low-CPU-usage probes
 - one user with often only 2-3% CPU utilisation
 - 60-100kB/s average transfer rate
 - CPU@CERN all data at US-T2
- After vector-read/TTC was enabled
 - improvement by factor 4.5 in turn-around and CPU utilisation remaining factor 6 wrt local EOS access
- "Visible" impact on users is mild (if sufficient batch slots are there)
 - even slow jobs are running stable in parallel
 - in many cases: no concrete expectation about what their job duration / transfer speed should be
- Impact on infrastructure
 - may rise: low CPU jobs block memory and hence other slots
 - not likely to improve with VM based CPU scheduling
- => low CPU & low throughput & no TTC
 - is easy to spot & warn about with existing monitoring

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

"Federation" Impact on CERN EOS (CPU outside)

- How much is EOS used as storage fall-back?
 - numbers: less than 1% of opens / read-bytes for ATLAS and CMS
 - very low fraction
 - no visible impact on storage or network

ALICE

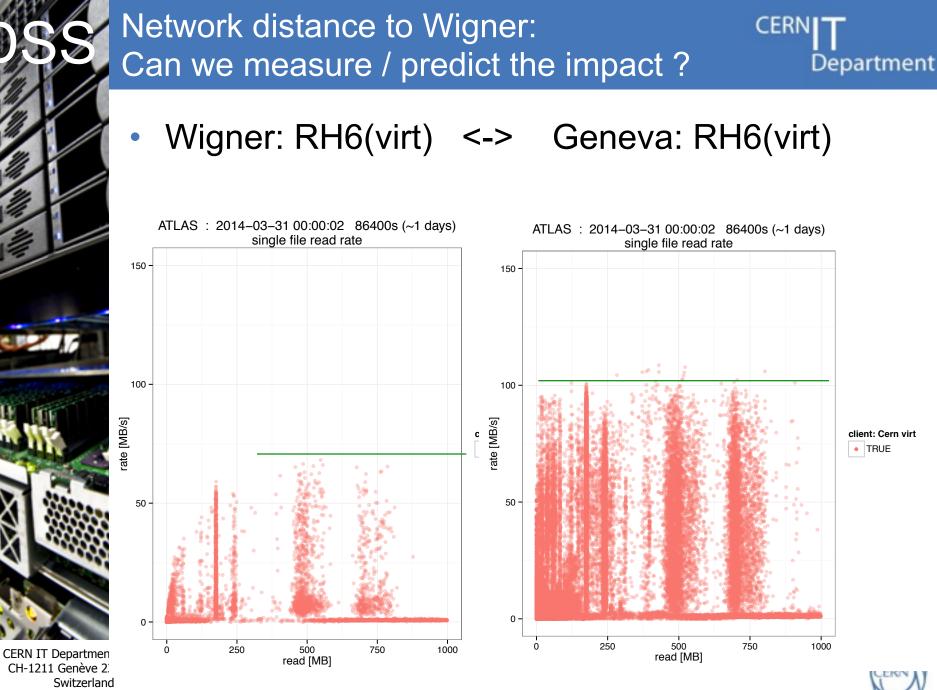
- one quarter of all opens and bytes read
 - not strictly xroot federation, but remote access from outside
 - may include some data distribution

LHCb

6

no external user access

"Federation" impact on CERN CPUs? (data outside)


- How much are CERN jobs using outside storage?
 - data from March FAX/AAA logs
- ATLAS
 - very small fraction
 - > 99% Ilija's test jobs
 - average rate: 270 kB/s (but, again: test jobs)
- CMS

7

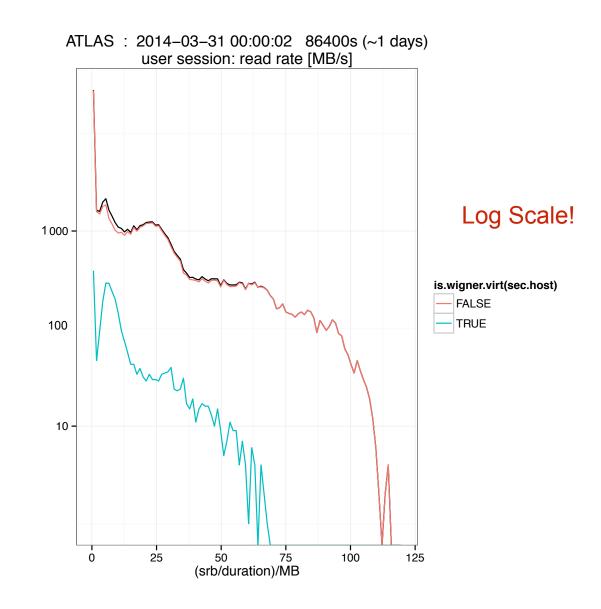
- some enthusiasts
 - 1.6 million accesses by one user to one US site
 - 1.3 CPU years with 5.5TB transferred
- normally: O(1k-10k) accesses to other sites
- average rate: 55 kB/s
- ALICE & LHCb
 - no xroot monitoring data available via dashboard

Department

www.cern.ch/it

Is this expected? important?

- Single stream max bandwidth
 - depends on RTT, link speed, tcp buffer size
 - well known, but less well controlled
 - …and packet-loss frequency (if any)
- Ramp-up wrt transferred volume
 - can be passively measured (eg from copy jobs)
 - complementary to perfSONAR
- Fitting the expected function(RTT) allows to detect low-level packet drops / low buffer size
- Is the impact currently important for real performance (evt/s) ?
 - unlikely, as job profile is mainly CPU-bound
 - bandwidth is constrained by ROOT unpacking/decompression
 - this may change if s/w efficiency (or copy job fraction) should go up


Switzerland

9

CERN IT Department

CH-1211 Genève 23

Same data - rate distribution [MB/s]

CER

Department

A proposal for the xroot side

- Correlating CPU and IO metrics is still difficult
 - no common id to match file access with batch metrics
 - soon a set of virtualisation platforms will be used
- Proposal
 - add xroot client plugin to collect cpu and user metrics per session
 - correlated (by session id) with f-stream
 - -eg: cpu / wall / memory / swap / local IO
 - -event rate from ROOT / exp. framework
 - define app info field for main workloads
 - Eg: app_info := "app/version/specific_setting"
 - EOS internally uses: /eos/gridftp, /eos/balancing, /eos/draining, etc
- This would allow passive analysis of experiment throughput per 'app'
 - statistical comparison of sites/os/sw_versions...
- One would not be able to average evt/s over different apps
 - but one would be able to sum-up relative increases/decreases

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Summary

CERN**IT** Department

 Impact of remote access (and much more) can be extracted statistically from existing log data

- taking CPU/memory constraints into account
- Wigner impact is smaller than the one of RH6 and phys/virt moves
- Remote (WAN) scenarios need closer tracking of TTC/vector-read usage (also for vanilla ROOT users)
 - correlated logs are sufficient to spot candidates
 - but not always to identify affected users / apps
- Popular use of CPU/Wall-ratio for evaluating optimisations may be a dangerous shortcut!
- Proposed xroot client plugin would allow to obtain correlated results for user, CPU and IO metrics
 - in an extensible and infrastructure neutral way

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**