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Cloud Isn't New!
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The Systems Administrator's Story
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Servers

Database

Web server
● Once upon a time,

there was hardware...

● Adding a job required buying a server.

● And all management was manual.



  

Virtualization

● The King^WSysadmin helped the jobs to make 
friends, share servers, and Costs were Reduced!.

Database
server

Web server
Minecraft

File server



  

Infrastructure as a Service

Database server

Web server

File server

Other file server

Minecraft server

Quake server

Starcraft server

(etc)

● Many jobs came
to join the datacentre,
and the Sysadmin automated
it so all friendly jobs could meet.

● But the jobs were all small, and simple, and not failure-tolerant.



  

Platform as a Service

Database
service

File/object
store

Queue service

● The jobs got together
and built services.

● Services are fault-tolerant, and addressed
via the control plane.

● The control plane hides the mapping to hardware.

Finance database

Email store

Starcraft scores



  

Software as a Service

● And the services 
were the foundation 
of user-facing 
applications.



  

Aggregation and Disaggregation

● Virtualization:

– Disaggregation of hardware allows right-sizing.

● IaaS:

– Automation of the control plane.

● PaaS:

– Aggregation of hardware into a service, such as a database 
or filesystem.

● SaaS:

– Disaggregation of a software installation into user-sized units.

– We used to have one per desk.

– Now we have one per cloud, or one per planet.



  

Benefits of Virtualization

… and a machine fails.



  

Benefits of Virtualization

Now we have only two cases!



  

Why did XaaS Change Business?

● Virtualization and low overheads.

● Standardized and uniform administration.

● Automatic system management.

● Resource tracking and accounting.

● Service definitions.

● Scalability with a linear cost model.

● Easy API and portal access.

● Development resources and tools.

● Lower barrier to entry for end users.D
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http://blogs.forrester.com/james_staten/13-02-25-why_your_enterprise_private_cloud_is_failing



  

The Developer's Story



  

Building High Performance Systems

● We need to do more work per unit time.

● What if we can't do more basic operations per 
second on a single CPU?

● Trade-off between number of instructions and 
complexity of instructions.



  

Performance: RISC vs CISC

How does this map to the cloud?



  

MPI vs MapReduce

● MPI

– Small, simple 
operations

– No checkpoints

● MapReduce

– Slow, complex 
operations

– Restartable 
operations

● Both are valid ways to use a cluster.

● Each has its strengths and weaknesses.

● Neither is inherently superior.

So what does our cluster look like?



  

Production Cluster Usage

Most of the cluster is combined to run larger jobs.



  

Production Cluster Usage

● Production jobs are larger 
than one node.

– We have to subdivide the job.

– The hardware SKU should 
match the natural subdivision of 
the job.

● Virtualization is overhead.

How do we design and manage this infrastructure?



  

How Cloud Achieves Scale

So what did we win or lose?



  

How Cloud Achieves Scale

● This sweet spot has an associated set of programming 
techniques:

– Restricted reliability guarantees.

– Restricted coordination guarantees.

– Simpler application contracts.

● As a consequence of this, we get scale!

– Abstraction of hardware → orthogonality of hardware and software.

– Automation → elasticity (accessibility) for developers.

– Simplicity of contract → predictability and ease of programming.

– Restricted coordination guarantees → scale-out.

Things fall apart...



  

Exposition of Underlying Contract

● The resulting robustness of the stack 
creates a more reliable service overall.

● Consider Netflix vs Oracle...

The cost of hiding failure rapidly exceeds the benefit.

Handle, rather than hide failures.

… handle them in the application layer.

Retry...
retry...

retry...

retry...

retry...failover...

failover... buy another one...



  

Web Service: Traditional Model

● Users

● Load balancer

● Web server

● Database



  

Web Service: Cloud Model

● Users

● Queue

● Load balancer

● Web server

● Storage ring



  

Failure Analysis

● Database crash

– The database is not failure 
tolerant.

– OK, OK, you paid for a failure 
tolerant database. Ouch!

● Database hiccup

– The stack is synchronous.

– Any failure is exposed to user.

CRASH!!!



  

Failure Analysis

CRASH!!!

● A node in the
storage ring
crashed.

– Who cares?

– Not the storage
ring, nor its clients.

● Storage hiccup.

– Hiccups are
tunable.

– Either report failure to user, or
retry procesing from queue.



  

Failure Analysis Questions



  

Load Management

“B*gger”
– system

“B*gger”
– sysadmin

We can do better...!



  

Turning the Knob

Next example.



  

Cloud vs Scale-Up?

● Lazy algorithms with bad access patterns.

– Many of these are bad in any case.

– See Mechanical Sympathy.

● Shared-anything vs shared-nothing.

– Do we need to go as far as shared-nothing?

– Remote memory / RDMA.

– MapReduce vs Bloom-Filter feedback.

● The same as NUMA, but more so.

– Distances are larger.

– Not many people can really program NUMA.

– Think Cray again?

● One basket, and watch that basket.

– Not practical or realistic, at any scale.

– Ask anyone who has a home server.



  

How to be Successful in the Cloud

    “Would you rather fight 1 horse-sized duck or 100 duck-sized horses?”



  

Attributes of Cloudy Applications

● Of systems:

– Stateless components

– Failure tolerance, failover, circuit-breakers

– Replication

– Independent, loosely coupled components

● Of processes:

– Independence of datasets

– Repeatability



  

Brewer's CAP Theorem

Any distributed 
system must either

– fail, or

– give the wrong 
answer.

Yes, I fixed the tyop in the image.
http://aphyr.com/



  

Architectural Guidelines

● Separate long term storage.

– This is the only “reliable” component.

– All other components should be stateless.

● Subdivide your dataset or workload.

– The I/O layout will be tightly coupled to your algorithm.

– Allow for re-execution of a unit.

● Checkpoint computations.

– Decide how much (of what) you are willing to lose.

● Consider approximation algorithms.

– You can compute the correct answer even with incorrect intermediates.



  

Mistaken Requests

● Some common, but (usually) mistaken 
requests:

– Transactions.

– Hot fail-over.

– Process migration.

– Strongly consistent ordering or clocks.

– Cluster-wide truths.

Let's talk some examples, while we're here.



  

Implementations and Examples



  

Existing Building Blocks

● Building Blocks

– Cassandra

– ZooKeeper

– MapReduce/Hadoop

– JGroups

● Tools and Management:

– Dapper

– Hystrix

– Scribe

– ChaosMonkey

● Counterexamples:

– MPI, MySQL, Mosix, DRBD



  

Cassandra (Facebook/Netflix)

● High performance distributed hash table.

– Replaces the relational database.

– Optional consistency.

● Allows a performance/consistency trade-off.

– Schema-free long term storage.

– Denormalized data.

● Seeks cost more than reads.

– No transactions!

– No shutdown procedure!

● All the focus is on crash recovery.

● And the real meat:

– Dynamo, hinted handoff, reconstruction, ...



  

ZooKeeper (Everybody)

● A distributed agreement system.

– Atomic operations across multiple machines.

– Twitter use it for configuration.

– Netflix wrote the Curator client.

– Assume it useful, but do not assume it reliable.

– Does not scale.



  

Hadoop (Yahoo, World+Dog)

● HDFS:

– Distributed filesystem, reasonably robust.

– Very restricted API.

● MapReduce:

– Restartable and repeatable computation.

● Hive:

– A MapReduce-based SQL engine.

● HBase:

– A distributed hash table.

● Other projects:

– Varying levels of maturity and reliability.



  

Implementations of Tools

● Distributed Tracer: Dapper/Zipkin

● CircuitBreaker: Hystrix

● Logger: Scribe

● Exception centralizer: ???

● Fault Injection: ChaosMonkey



  

Tools: Zipkin (Twitter)
● A holistic view of system behaviour.

● What happened, and when?

● Adaptive rate sampling

See: http://engineering.twitter.com/2012/06/distributed-systems-tracing-with-zipkin.html



  

Aside: Large System Effects

● In a large system, 
overheads matter.

● We must account for:

– Setup time.

– Failed calls.

– Network delay.

– Tear-down time.

See: http://research.google.com/pubs/pub36356.html



  

Logging (Facebook)

● Scribe: A fault tolerant log-routing framework.

See: http://www.facebook.com/note.php?note_id=32008268919

The median latency for trace data collection is less than 15 seconds. The 98th 
percentile latency is itself bimodal over time; approximately 75% of the time, 98th 
percentile collection latency is less than two minutes, but the other approximately 
25% of the time it can grow to be many hours. – Sigelman et al, Google



  

Transactional Logging

● Reduces log volume from successful calls.

● If an exception is thrown, messages in the context 
are not discarded.

See: http://pragprog.com/magazines/2011-12/justintime-logging

LogContext ctx = LOG.begin();
try {
    …
    if (LOG.isDebugEnabled())
        LOG.debug(...);
    …
    ctx.discard();
} finally {
    ctx.close();
}



  

Failures Cascade

● Failure of one mirror transfers load to others.

See: http://upalc.com/google-amazon.php



  

Tolerance of Failure

● Even without cascading failure, if each 
component is 95% reliable, a 10-component 
system is 60% reliable.

● We must handle failures in upstream systems.



  

Handling Failure (Netflix)



  

Aside: Steve Yegge's Google Rant

● Every single one of your peer teams suddenly 
becomes a potential DOS attacker.

● Monitoring and QA are the same thing: […] It may well 
be the case that the only thing still functioning in the 
server is the little component that knows how to say 
"I'm fine [...]” in a cheery droid voice.

● A ticket might bounce through 20 service calls before 
the real owner is identified.

● Debugging problems with someone else's code gets a 
LOT harder.

See: http://upalc.com/google-amazon.php



  

Monitoring Failure (Netflix)

See: http://techblog.netflix.com/2012/11/hystrix.html

● Hystrix tells you when it broke.

● Zipkin tells you where and why it broke.



  

Fabric Services

Where your software meets the cloud.



  

Fabric Services

● Storage (Object/DHT)

● Compute

● Network

● Queue

● Service discovery and registration

● Load balancing

● DNS, autoscaling, management, ...



  

Using Fabric Services

● The best cloud architects take a set of fabric 
services and build an application out of them.

● The best product designers create fabric 
services such that applications can be built out 
of them.

● It's like an algorithms book, but with different 
elements.



  

Implementations of Cloud

Looks like one of my implementations.



  

Why Buy Cloud?

● Not Invented Here?

– If you're going to scale out, you have to build a 
cloud anyway.

– A lot of companies did just that before Amazon 
made it a public commodity.

– Most of python is just reinventing Java.

● But python has not yet reinvented most of Java.

● Give it another 20 years...



  

Implementations: Amazon

● Started as a dog-food system.

● Very rich set of fabric services.

● Data import/export is a challenge.

● Probably crossed the overload threshold.

● Expensive.



  

Implementations: Google

● Primarily a PaaS offering.

● Presumably also based on dog-food.

● Allows Google greater efficiency in resource 
management.

– Comes out in application cost comparisons, but 
we haven't seen many of those.



  

Implementations: Azure

● Azure is a mixture of IaaS, PaaS, SaaS.

● Imagine the customer is an application builder.

– Amazon sells IaaS with optional PaaS services.

– Google sells PaaS services with optional IaaS.

– Azure managed to create a confusion.



  

Implementations: Red Hat

● Download and build your own.

● Based on open source components.

● Mostly not very mature.



  

Implementations: Nebula

● Delivered on a truck.

● Plug in, turn on.

I will now sing the company song...



  

Other Companies to Watch

● Experts at using the cloud!

– Google

– Netflix

– Twitter

– LinkedIn

– Facebook

– Yahoo

● All have papers or publications.



  

Conclusions

● I just came to inspire a discussion.

– The conclusions aren't canned.

– Please argue with each other / me now.
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