

Hidden
in the
Clouds

Same Title
New Talk

Titles not my strong suit.

Shevek <shevek@nebula.com>

Cloud Isn't New!

“Little Character”, Control Data / Seymour Cray

The Systems Administrator's Story

Image © 2012, Erik Johansson

Servers

Database

Web server
● Once upon a time,

there was hardware...

● Adding a job required buying a server.

● And all management was manual.

Virtualization

● The King^WSysadmin helped the jobs to make
friends, share servers, and Costs were Reduced!.

Database
server

Web server
Minecraft

File server

Infrastructure as a Service

Database server

Web server

File server

Other file server

Minecraft server

Quake server

Starcraft server

(etc)

● Many jobs came
to join the datacentre,
and the Sysadmin automated
it so all friendly jobs could meet.

● But the jobs were all small, and simple, and not failure-tolerant.

Platform as a Service

Database
service

File/object
store

Queue service

● The jobs got together
and built services.

● Services are fault-tolerant, and addressed
via the control plane.

● The control plane hides the mapping to hardware.

Finance database

Email store

Starcraft scores

Software as a Service

● And the services
were the foundation
of user-facing
applications.

Aggregation and Disaggregation

● Virtualization:

– Disaggregation of hardware allows right-sizing.

● IaaS:

– Automation of the control plane.

● PaaS:

– Aggregation of hardware into a service, such as a database
or filesystem.

● SaaS:

– Disaggregation of a software installation into user-sized units.

– We used to have one per desk.

– Now we have one per cloud, or one per planet.

Benefits of Virtualization

… and a machine fails.

Benefits of Virtualization

Now we have only two cases!

Why did XaaS Change Business?

● Virtualization and low overheads.

● Standardized and uniform administration.

● Automatic system management.

● Resource tracking and accounting.

● Service definitions.

● Scalability with a linear cost model.

● Easy API and portal access.

● Development resources and tools.

● Lower barrier to entry for end users.D
e
v
e

lo
p
e

rs
A

d
m

in
is

t ra
t o

rs

http://blogs.forrester.com/james_staten/13-02-25-why_your_enterprise_private_cloud_is_failing

The Developer's Story

Building High Performance Systems

● We need to do more work per unit time.

● What if we can't do more basic operations per
second on a single CPU?

● Trade-off between number of instructions and
complexity of instructions.

Performance: RISC vs CISC

How does this map to the cloud?

MPI vs MapReduce

● MPI

– Small, simple
operations

– No checkpoints

● MapReduce

– Slow, complex
operations

– Restartable
operations

● Both are valid ways to use a cluster.

● Each has its strengths and weaknesses.

● Neither is inherently superior.

So what does our cluster look like?

Production Cluster Usage

Most of the cluster is combined to run larger jobs.

Production Cluster Usage

● Production jobs are larger
than one node.

– We have to subdivide the job.

– The hardware SKU should
match the natural subdivision of
the job.

● Virtualization is overhead.

How do we design and manage this infrastructure?

How Cloud Achieves Scale

So what did we win or lose?

How Cloud Achieves Scale

● This sweet spot has an associated set of programming
techniques:

– Restricted reliability guarantees.

– Restricted coordination guarantees.

– Simpler application contracts.

● As a consequence of this, we get scale!

– Abstraction of hardware → orthogonality of hardware and software.

– Automation → elasticity (accessibility) for developers.

– Simplicity of contract → predictability and ease of programming.

– Restricted coordination guarantees → scale-out.

Things fall apart...

Exposition of Underlying Contract

● The resulting robustness of the stack
creates a more reliable service overall.

● Consider Netflix vs Oracle...

The cost of hiding failure rapidly exceeds the benefit.

Handle, rather than hide failures.

… handle them in the application layer.

Retry...
retry...

retry...

retry...

retry...failover...

failover... buy another one...

Web Service: Traditional Model

● Users

● Load balancer

● Web server

● Database

Web Service: Cloud Model

● Users

● Queue

● Load balancer

● Web server

● Storage ring

Failure Analysis

● Database crash

– The database is not failure
tolerant.

– OK, OK, you paid for a failure
tolerant database. Ouch!

● Database hiccup

– The stack is synchronous.

– Any failure is exposed to user.

CRASH!!!

Failure Analysis

CRASH!!!

● A node in the
storage ring
crashed.

– Who cares?

– Not the storage
ring, nor its clients.

● Storage hiccup.

– Hiccups are
tunable.

– Either report failure to user, or
retry procesing from queue.

Failure Analysis Questions

Load Management

“B*gger”
– system

“B*gger”
– sysadmin

We can do better...!

Turning the Knob

Next example.

Cloud vs Scale-Up?

● Lazy algorithms with bad access patterns.

– Many of these are bad in any case.

– See Mechanical Sympathy.

● Shared-anything vs shared-nothing.

– Do we need to go as far as shared-nothing?

– Remote memory / RDMA.

– MapReduce vs Bloom-Filter feedback.

● The same as NUMA, but more so.

– Distances are larger.

– Not many people can really program NUMA.

– Think Cray again?

● One basket, and watch that basket.

– Not practical or realistic, at any scale.

– Ask anyone who has a home server.

How to be Successful in the Cloud

 “Would you rather fight 1 horse-sized duck or 100 duck-sized horses?”

Attributes of Cloudy Applications

● Of systems:

– Stateless components

– Failure tolerance, failover, circuit-breakers

– Replication

– Independent, loosely coupled components

● Of processes:

– Independence of datasets

– Repeatability

Brewer's CAP Theorem

Any distributed
system must either

– fail, or

– give the wrong
answer.

Yes, I fixed the tyop in the image.
http://aphyr.com/

Architectural Guidelines

● Separate long term storage.

– This is the only “reliable” component.

– All other components should be stateless.

● Subdivide your dataset or workload.

– The I/O layout will be tightly coupled to your algorithm.

– Allow for re-execution of a unit.

● Checkpoint computations.

– Decide how much (of what) you are willing to lose.

● Consider approximation algorithms.

– You can compute the correct answer even with incorrect intermediates.

Mistaken Requests

● Some common, but (usually) mistaken
requests:

– Transactions.

– Hot fail-over.

– Process migration.

– Strongly consistent ordering or clocks.

– Cluster-wide truths.

Let's talk some examples, while we're here.

Implementations and Examples

Existing Building Blocks

● Building Blocks

– Cassandra

– ZooKeeper

– MapReduce/Hadoop

– JGroups

● Tools and Management:

– Dapper

– Hystrix

– Scribe

– ChaosMonkey

● Counterexamples:

– MPI, MySQL, Mosix, DRBD

Cassandra (Facebook/Netflix)

● High performance distributed hash table.

– Replaces the relational database.

– Optional consistency.

● Allows a performance/consistency trade-off.

– Schema-free long term storage.

– Denormalized data.

● Seeks cost more than reads.

– No transactions!

– No shutdown procedure!

● All the focus is on crash recovery.

● And the real meat:

– Dynamo, hinted handoff, reconstruction, ...

ZooKeeper (Everybody)

● A distributed agreement system.

– Atomic operations across multiple machines.

– Twitter use it for configuration.

– Netflix wrote the Curator client.

– Assume it useful, but do not assume it reliable.

– Does not scale.

Hadoop (Yahoo, World+Dog)

● HDFS:

– Distributed filesystem, reasonably robust.

– Very restricted API.

● MapReduce:

– Restartable and repeatable computation.

● Hive:

– A MapReduce-based SQL engine.

● HBase:

– A distributed hash table.

● Other projects:

– Varying levels of maturity and reliability.

Implementations of Tools

● Distributed Tracer: Dapper/Zipkin

● CircuitBreaker: Hystrix

● Logger: Scribe

● Exception centralizer: ???

● Fault Injection: ChaosMonkey

Tools: Zipkin (Twitter)
● A holistic view of system behaviour.

● What happened, and when?

● Adaptive rate sampling

See: http://engineering.twitter.com/2012/06/distributed-systems-tracing-with-zipkin.html

Aside: Large System Effects

● In a large system,
overheads matter.

● We must account for:

– Setup time.

– Failed calls.

– Network delay.

– Tear-down time.

See: http://research.google.com/pubs/pub36356.html

Logging (Facebook)

● Scribe: A fault tolerant log-routing framework.

See: http://www.facebook.com/note.php?note_id=32008268919

The median latency for trace data collection is less than 15 seconds. The 98th
percentile latency is itself bimodal over time; approximately 75% of the time, 98th
percentile collection latency is less than two minutes, but the other approximately
25% of the time it can grow to be many hours. – Sigelman et al, Google

Transactional Logging

● Reduces log volume from successful calls.

● If an exception is thrown, messages in the context
are not discarded.

See: http://pragprog.com/magazines/2011-12/justintime-logging

LogContext ctx = LOG.begin();
try {
 …
 if (LOG.isDebugEnabled())
 LOG.debug(...);
 …
 ctx.discard();
} finally {
 ctx.close();
}

Failures Cascade

● Failure of one mirror transfers load to others.

See: http://upalc.com/google-amazon.php

Tolerance of Failure

● Even without cascading failure, if each
component is 95% reliable, a 10-component
system is 60% reliable.

● We must handle failures in upstream systems.

Handling Failure (Netflix)

Aside: Steve Yegge's Google Rant

● Every single one of your peer teams suddenly
becomes a potential DOS attacker.

● Monitoring and QA are the same thing: […] It may well
be the case that the only thing still functioning in the
server is the little component that knows how to say
"I'm fine [...]” in a cheery droid voice.

● A ticket might bounce through 20 service calls before
the real owner is identified.

● Debugging problems with someone else's code gets a
LOT harder.

See: http://upalc.com/google-amazon.php

Monitoring Failure (Netflix)

See: http://techblog.netflix.com/2012/11/hystrix.html

● Hystrix tells you when it broke.

● Zipkin tells you where and why it broke.

Fabric Services

Where your software meets the cloud.

Fabric Services

● Storage (Object/DHT)

● Compute

● Network

● Queue

● Service discovery and registration

● Load balancing

● DNS, autoscaling, management, ...

Using Fabric Services

● The best cloud architects take a set of fabric
services and build an application out of them.

● The best product designers create fabric
services such that applications can be built out
of them.

● It's like an algorithms book, but with different
elements.

Implementations of Cloud

Looks like one of my implementations.

Why Buy Cloud?

● Not Invented Here?

– If you're going to scale out, you have to build a
cloud anyway.

– A lot of companies did just that before Amazon
made it a public commodity.

– Most of python is just reinventing Java.

● But python has not yet reinvented most of Java.

● Give it another 20 years...

Implementations: Amazon

● Started as a dog-food system.

● Very rich set of fabric services.

● Data import/export is a challenge.

● Probably crossed the overload threshold.

● Expensive.

Implementations: Google

● Primarily a PaaS offering.

● Presumably also based on dog-food.

● Allows Google greater efficiency in resource
management.

– Comes out in application cost comparisons, but
we haven't seen many of those.

Implementations: Azure

● Azure is a mixture of IaaS, PaaS, SaaS.

● Imagine the customer is an application builder.

– Amazon sells IaaS with optional PaaS services.

– Google sells PaaS services with optional IaaS.

– Azure managed to create a confusion.

Implementations: Red Hat

● Download and build your own.

● Based on open source components.

● Mostly not very mature.

Implementations: Nebula

● Delivered on a truck.

● Plug in, turn on.

I will now sing the company song...

Other Companies to Watch

● Experts at using the cloud!

– Google

– Netflix

– Twitter

– LinkedIn

– Facebook

– Yahoo

● All have papers or publications.

Conclusions

● I just came to inspire a discussion.

– The conclusions aren't canned.

– Please argue with each other / me now.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

