
Data & Storage Services

CERN IT Department 
CH-1211 Genève 23 

Switzerland 
www.cern.ch/it

DSS

New XRootD client plug-ins

Łukasz Janyst 

Federated Storage Workshop 
Menlo Park, 11.04.2014



Data & 
Storage 
Services Outline

• The new client - XRootD 4.0.0 
• XrdCl and its API stack 
!

• The plug-in mechanism: 
– Where? 
– What? 
– How? 
– Why?/What for? 
– When?

2



Data & 
Storage 
Services The new XRootD client

• First released with XRootD 3.3.0 
!

• New client library: libXrdCl.so 
• New command line utilities: 

– xrdcopy - replacement for xrdcp (the same interface) 
– xrdfs - replacement for xrd (new interface) 
!

• Default in XRootD 4.0.0: 
– Old client (XrdClient) officially deprecated 
– xrdcp becomes a symlink to xrdcopy

3



Data & 
Storage 
Services Async & stream multiplexing

• The XRootD protocol supports virtual streams 
• There may be many requests outstanding and the 

server may respond in the order it chooses 
• The new client handles responses as soon as they 

come calling the user call-back function, the order is 
unimportant

Req #1 Req #2 Req #3 Req #4

Resp #3 Resp #2 Resp #1 Resp #4

4



Data & 
Storage 
Services Thread safe/aware

• File and FileSystem objects can be safely accessed 
from multiple execution threads 

• Internally uses a worker thread pool to handle call-
backs

Thread #1

Thread #2

Thread #3

Thread #4

5



Data & 
Storage 
Services Fork safe

• Can handle forking even when the IO operations 
are in progress 

• File and FileSystem objects remain valid in both 
parent and child 

• The operations in the parent continue after the fork 
• The objects in the child will run recovery procedure 

(like in the case of a broken connection)

ForkParent

Parent

Child

6



Data & 
Storage 
Services XrdCl API stack & neighbours

7

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena
XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

8

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• PostMaster - low-level message handling API 
– sends messages 
– asynchronous - notifies message handlers about sent/

incoming messages 
– notifies about stream status changes (disconnections)

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

9

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• File/FileSystem - implement XRootD operations 
– user-facing C++ API 
– does reads, writes, mkdirs, listings, staging and the like 
– asynchronous - call back when response is read

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

10

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• CopyProcess - implement copy operations 
– user-facing C++ API, a library call 
– take source/target URLs, couple more parameters and do 

the magic 
– notify periodically about progress using a call-back

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

11

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• xrdcopy - the copy command 
– translate command line parameters to CopyProcess calls 

• xrdfs - the meta-data command 
– translate command line parameters to FileSystem calls

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

12

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• PyXRootD - make the user APIs available in Python 
– all APIs user APIs available: File, FileSystem and 

CopyProcess 
– uses Python callables to handle call-backs

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl API stack & neighbours

13

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• Neighbours - all the purple boxes above and quite 
a bit more that did not fit the diagram 
– EOS uses a bit of everything 
– significant number of packages use XrdPosix interface

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl plug-ins

14

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• Plug-ins - replace the original implementation 
– both for File and FileSystem objects 
– all calls can be replaced 
– all the layers above can benefit without changing a single 

line of code

XRootD - core

XRootD

External



Data & 
Storage 
Services XrdCl user API

• All xroot protocol requests are implemented as 
asynchronous methods 

• The calls queue the request and return, never 
block

15

  XRootDStatus File::Open( const std::string &url,!
                           OpenFlags::Flags   flags,!
                           Access::Mode       mode,!
                           ResponseHandler   *handler,!
                           uint16_t           timeout )!

• The response handler is called when the response 
is ready 

• Synchronous versions implemented in terms of 
asynchronous ones, with a semaphore



Data & 
Storage 
Services XrdCl plug-in API

• The plug-in API is exactly the same - except for the 
virtual keyword 

• Only asynchronous calls may be overloaded

16

  virtual!
  XRootDStatus File::Open( const std::string &url,!
                           OpenFlags::Flags   flags,!
                           Access::Mode       mode,!
                           ResponseHandler   *handler,!
                           uint16_t           timeout )!



Data & 
Storage 
Services Plug-in Manager

• Process plug-in environment configuration 
– covered later in the presentation 
!

• Manage a map between URLs and plug-in factories: 
– ie. root://eosatlas.cern.ch:1094 ▹ XrdEosFactory 
– factories are objects that instantiate plug-ins (think of: new	  

XrdEosFile) given URLs

17

root://eosatlas.cern.ch:1094


Data & 
Storage 
Services Flow

• File object creation (constructor) 
– ask the plug-in manager whether a plug-in for a given 

URL is known 
– if so, install the plug-in 
!

• File object usage (method calls) 
– call the plug-in if it is installed 
– call the normal XRootD code if there is no plug-in present

18



Data & 
Storage 
Services Deployment - config files

• The plug-ins are discovered and configured by 
scanning configuration files 

• There is one config file per plug-in 
• It’s a set of key value pairs

19

 ]==> cat eos.conf !
 # example configuration!
!
 url = eosatlas.cern.ch;eoscms.cern.ch!
 lib = /usr/lib64/libXrdEosClient.so!
 enable = true!
 customarg1=customvalue2!
 customarg2=customcalue2



Data & 
Storage 
Services Deployment - search paths

• The plug-in manager will search for global 
configuration files in:

20

/etc/xrootd/client.plugins.d/



Data & 
Storage 
Services Deployment - search paths

• The plug-in manager will search for global 
configuration files in:

21

/etc/xrootd/client.plugins.d/

• The global settings may be overridden by 
configuration files found in:

~/.xrootd/client.plugins.d/



Data & 
Storage 
Services Deployment - search paths

• The plug-in manager will search for global 
configuration files in:

22

/etc/xrootd/client.plugins.d/

• The global settings may be overridden by 
configuration files found in:

~/.xrootd/client.plugins.d/

• Any of the previous settings may be overridden by 
configuration files found in a directory pointed to by:

XRD_PLUGINCONFDIR



Data & 
Storage 
Services Plug-in packaging

• Plug-ins may be developed and distributed 
independently of the XRootD code 
!

• The plug-in manager performs strict interface 
version checking 
– will refuse to load ABI incompatible plug-ins 
!

• Plug-in package (RPM) needs to contain: 
– the plug-in shared library 
– a config file in /etc/xrootd/client.plugins.d/

23



Data & 
Storage 
Services Primary motivation

• Stripe files and use erasure 
coding to increase fault 
tolerance 
!

• Primarily for archiving and 
similar use-cases 
!

• Multiple techniques: 
– Hamming parity 
– Reed-Solomon error 

correction 
– Low-density parity-check

24

RAIN 
!
Redundant Array 
of Independent 

Nodes



Data & 
Storage 
Services EOS Erasure Coding - now

• The client needs to see the file as a whole 
• File reconstruction needs to be done at a gateway 
• CPU and bandwidth scalability issues

25

Stripe servers Gateway User



Data & 
Storage 
Services EOS Erasure Coding - 4.0.0

• When contacting EOS the client is able to execute 
specialised code 

• Can contact the stripe servers directly 
• Can reconstruct the data at the client machine 
• Transparently to the users - whatever they are!

26

Stripe servers User



Data & 
Storage 
Services Consequences

• Client plug-ins provide a way for the XRootD 
community to play, tinker and hack the client 
– exactly what made the XRootD server so successful! 
!

• All possible calls may be overridden 
!

• Everything is transparent to the layers above!

27



Data & 
Storage 
Services Client-side load balancing

Open multiple files at the same time and fetch data 
from the fastest server - CMS-style as presented by 
Brian Bockelman at CHEP 2013.

28

User

Servers

100 MB/s

5 MB/s

1 GB/s



Data & 
Storage 
Services Redirect to other protocols

Redirect and transparently handle other protocols if 
needed.

29

User

Servers

root://

http://

ceph://

file://



Data & 
Storage 
Services Caching and monitoring

Cache the data locally at the user box and re-use 
when needed.

30

UserServer

UserServer

Gather and send back custom monitoring 
information to the server.



Data & 
Storage 
Services Conclusion

• The plug-ins are: 
– flexible - override all possible calls, do whatever you 

want 
– independent - development and deployment may be 

completely detached from XRootD core 
– ready to play with in XRootD 4 
– give a possibility to freely experiment and then 

incorporate new things into the core package

31



Data & 
Storage 
Services Thanks!

32

Thanks for your attention! 
!

Questions? Comments?



Data & 
Storage 
Services Notes

33

• Most of the artwork in this presentation comes from: 
Open Icon Library


