UPDATE ON ANALYSES OF THE 5 CELL 650 MHz CAVITY

RIGHT CAVITY END MODIFICATION

CAVITY BOTH ENDS MODIFIED, NO STIFFNESS

σ_{max} ~ 63MPa/66MPa (4mm/3.7mm)

σ_{max} ~ 3/4.5MPa (4mm/3.7mm)

CAVITY BOTH ENDS MODIFIED, NO STIFFNESS

Tuning: Efficiency and dF/dL β =0.92 T=4 vs. 3.7mm

TOTAL F=6.4/6.0kN applied, Field flatness ~1.5%

df/dP vs. Tuner Stiffnes, new helium vessel design

Modern cryogenic systems achieve rms pressure stability $\longrightarrow df/dP < 3Hz$ ~0.2 mbar

Updated Model

Changes with respect to the model presented on Wednesday 8/7:

- Niobium 3.7 mm
- Welding Nb to Ti-45Nb at the bellow side

- Linear structural analyses to update the stress results in the "new" model
- Welding verification

Analyses Performed:

- Pressure and self weight of the system @ RT
- Pressure, self weight of the system and tuner displacement 1 mm@ RT
- Cooldown, pressure and self weight of the system @ CT
- Cooldown, pressure, self weight of the system and tuner displacement @ CT

			Niobium			
	E [GPa]	Yield [MPa]	Ultimate [MPa]	Int th contr 293 K - 1.88 K	Poisson Ratio	Allowable Stress [MPa]
293 K	104.8	38	8 114		0.38	25
1.88 K	104.8	317	600	0.0014	0.38	127
			Ti-45Nb			
	E [GPa]	Yield [MPa]	Ultimate [MPa]	th contr 293 K - 1.88 K	Poisson Ratio	Allowable Stress [MPa]
293 К	62	475	N/A		0.347	316
1.88 K	62	544	N/A	0.0019	0.347	362
			Ti grade 2			
	E [GPa]	Yield [MPa]	Ultimate [MPa]	th contr 293 K - 1.88 K	poisson ratio	Allowable Stress [MPa]
293 К	106.8	275	344		0.32	98
1.88 K	106.8	834	1116	0.0015	0.32	318

Finite Element Model

Number of elements $\approx 10^6$

Mesh Refined in the contact region where welds needed to be checked

2 bar pressure and weight of the system @ RT

Loads And Boundary Conditions

- 2 bar pressure
- Acceleration of gravity

Von Mises Stress Plot

Equivalent Stress in each component below the yield limit of the material

Von Mises Stress Plot for each material and component

Ti – Helium Vessel

 $\sigma_{Ti} < 275 MPa$

Ti-45Nb – 'Transition Elements'

Niobium – Cavity

Welds Proposed

Weld Bellow Side

Part 5, Div 2 – Local Analyses $\sigma_1 + \sigma_2 + \sigma_3 < 4\sigma_{all}\varepsilon$

Weld Ring Side

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	16 MPa
Allowable Stress of Ti-45Nb @ RT:	316 MF

0.65
16 MPa
316 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x ε [MPa]	<u>Eff</u> stot/(4Sε)
Nb	16	8	7	31	16	0.469
Ti-45Nb	14	6	3	23	205	0.028

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	16 MPa
Allowable Stress of Ti-45Nb @ RT:	316 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	4S x ε [MPa]	<u>Eff</u> <u>stot/(4S</u> ε)
Nb	14	10	0	24	16	0.369
Ti-45Nb	13	8	1	22	205	0.026

2 bar pressure, weight of the system and tuner displacement of 1 mm@ RT

Loads And Boundary Conditions

- 2 bar pressure
- Acceleration of gravity
- Tuner displacement: 1mm

Von Mises Stress Plot

Equivalent Stress in each component below the yield limit of the material

Von Mises Stress Plot for each material and component

Ti – Helium Vessel

 $\sigma_{Ti} < 275 MPa$

Ti-45Nb – 'Transition Elements'

 $\sigma_{Ti} < 475 MPa$

Niobium – Cavity

Welds Proposed

Weld Bellow Side

Part 5, Div 2 – Local Analyses $\sigma_1 + \sigma_2 + \sigma_3 < 4\sigma_{all}\varepsilon$

Weld Ring Side

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	16 MPa
Allowable Stress of Ti-45Nb @ RT:	316 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x ε [MPa]	<u>Eff</u> stot/(4Sε)
Nb	14	6	5	25	16	0.39
Ti-45Nb	13	5	3	21	205	0.03

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	16 MPa
Allowable Stress of Ti-45Nb @ RT:	316 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x E [MPa]	<u>Eff</u> <u>stot/(4S</u> ε)
Nb	20	14	-1	33	16	0.51
Ti-45Nb	18	11	1	30	205	0.04

Cooldown, 4 bar pressure and weight of the system @ CT

Loads And Boundary Conditions

- Cooldown to 2 K
- 4 bar pressure
- Acceleration of gravity

Von Mises Stress Plot

Equivalent Stress in each component below the yield limit of the material

Von Mises Stress Plot for each material and component

Ti – Helium Vessel

 $\sigma_{Ti} < 834 MPa$

Ti-45Nb – 'Transition Elements'

 $\sigma_{Ti} < 544 MPa$

Niobium – Cavity

 $\sigma_{Nb} < 317 MPa$

Welds Proposed

Weld Bellow Side

Part 5, Div 2 – Local Analyses $\sigma_1 + \sigma_2 + \sigma_3 < 4\sigma_{all}\varepsilon$

Weld Ring Side

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	127 MPa
Allowable Stress of Ti-45Nb @ RT:	362 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x ε [MPa]	<u>Eff</u> stot/(4Sε)
Nb	16	5	0	21	83	0.06
Ti-45Nb	24	23	-3	44	235	0.05

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	127 MPa
Allowable Stress of Ti-45Nb @ RT:	362 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x E [MPa]	<u>Eff</u> <u>stot/(4S</u> ε)
Nb	18	-14	-16	-12	83	0.04
Ti-45Nb	33	31	0	64	235	0.07

Cooldown, 4 bar pressure, weight of the system and tuner displacement of 1 mm @ CT

Loads And Boundary Conditions

- Cooldown to 2 K
- 4 bar pressure
- Acceleration of gravity
- Tuner displacement of 1 mm

Von Mises Stress Plot

Equivalent Stress in each component below the yield limit of the material

Von Mises Stress Plot for each material and component

Ti – Helium Vessel

 $\sigma_{Ti} < 834 MPa$

Ti-45Nb – 'Transition Elements'

 $\sigma_{Ti} < 544 MPa$

Niobium – Cavity

 $\sigma_{Nb} < 317 MPa$

Welds Proposed

Weld Bellow Side

Part 5, Div 2 – Local Analyses $\sigma_1 + \sigma_2 + \sigma_3 < 4\sigma_{all}\varepsilon$

Weld Ring Side

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	127 MPa
Allowable Stress of Ti-45Nb @ RT:	362 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x ε [MPa]	<u>Eff</u> stot/(4Sε)
Nb	-21	-50.6	-56.3	-127.9	2064	0.015
Ti-45Nb	27	25	-1.2	50.8	5883	0.002

Weld Efficiency ε	0.65
Allowable Stress of Nb @ RT:	127 MPa
Allowable Stress of Ti-45Nb @ RT:	362 MPa

Material	s 1 [MPa]	s 2 [MPa]	s 3 [MPa]	s tot [MPa]	S x E [MPa]	<u>Eff</u> <u>stot/(4S</u> ε)
Nb	13.3	-15.8	-19	-21.5	2064	0.003
Ti-45Nb	31	30	-1.2	59.8	5883	0.003

..... Summing up

Pressure and self weight of the system @ RT

- Von Mises Stresses Below the yield
- Welds ✓

Pressure, self weight of the system and tuner displacement 1 mm@ RT

- Von Mises Stresses Below the yield
- Welds ✓

Cooldown, pressure and self weight of the system @ CT

- Von Mises Stresses Below the yield
- Welds 🗹

Cooldown, pressure, self weight of the system and tuner displacement @ CT

- Von Mises Stresses Below the yield
- Welds 🗹

Observation on ASME Code on Welds. Div 1 – Part UW

FIG. UW-3 ILLUSTRATION OF WELDED JOINT LOCATIONS TYPICAL OF CATEGORIES A, B, C, AND D

TABLE UW-12 MAXIMUM ALLOWABLE JOINT EFFICIENCIES FOR ARC AND GAS WELDED JOINTS

				Degree of Radiographic Examination		
Type No.	Joint Description	Limitations	Joint Category	(a) Full [Note (1)]	(b) Spot [Note (2)]	(c) None
(1)	Butt joints as attained by double-welding or by other means which will obtain the same quality of deposited weld metal on the inside and outside weld surfaces to agree with the requirements of UW-35. Welds using metal backing strips which remain in place are excluded.	None	A, B, C & D	1.00	0.85	0.70
(2)	Single-welded butt joint with backing strip other than those included under (1)	 (a) None except as in (b) below (b) Circumferential butt joints with one plate offset; see UW-13(b)(4) and Fig. UW-13.1, sketch (i) 	A_B, C_& D A, B & C	0.90 0.90	0.80 0.80	0.65 0.65

07