
ARCONS: software to convert photons to science

Chris Stoughton

Fermi National Accelerator Laboratory
Center for Particle Astrophysics

stoughto@fnal.gov

March 26, 2031

Outline

I Photon Packet → Data on Disk

I ARCONS-pipeline

I I just want to see a picture!

I Conclusion

Photon Packet → Data on Disk (1)

photon packet

A photon packet is one 64-bit word, allocated as:

I 8 bits – channel

I 12 bits – Parabola Fit Peak Height

I 12 bits – Sampled Peak Height

I 12 bits – low pass filter baseline

I 20 bits – microsecond timestamp

For each pixel, a variable-length list of photon packets is written
each second.
A 2-d array of Roach/channel IDs defines where the pixels are on
the array.

Photon Packet → Data on Disk (2)

This is all written to an hdf5 file:

$ h5dump -n obs_20121211-134003.h5

HDF5 "obs_20121211-134003.h5" {

FILE_CONTENTS {

group /

group /beammap

dataset /beammap/atten

dataset /beammap/beamimage

dataset /beammap/resfreq

group /header

dataset /header/header

group /r0

group /r0/p0

dataset /r0/p0/t1355233205

group /r0/p1

dataset /r0/p1/t1355233205

...

Photon Packet → Data on Disk (3)

Identify a file with:

I run – such as PAL2012

I date – such as 20121210

I flavor – such as obs, cal, calsol, timeMask, ...

I tstamp – such as 20121211-134003

Files written during observing are under $MKID DATA DIR and
generated files are under $INTERM DIR.

There are also some log files written by the data acquisition system
which are used to fix known issues. Matt Strader knows all about
these!

For the PAL2012 data run, 400 GByte raw data written.

ARCONS-pipeline (1)

Hosted at (private) github repository
https://github.com/bmazin/ARCONS-pipeline

730 commits, 9 contributors

find . -name ’*.py’ | xargs wc -l

...

39884 total

ARCONS-pipeline (2)

ARCONS-pipeline (3)

PREREQUISITES (from README.md)

Enthought Python Distribution (EPD) 7.3
(http://www.enthought.com/products/epd.php)

PyEphem (http://rhodesmill.org/pyephem/)

PyGuide
(http://www.astro.washington.edu/users/rowen/PyGuide/Manual.html)

(you can check if you have them with help(’modules’) within the
(i)python interpreter)

If you are having troubles with PyTables (which you shouldn’t since
it is built into EPD), see http://www.tumblr.com/tagged/pytables
and instructions therein for Mac.

Another package you will need is interval. It depends on crlibm

ARCONS-pipeline (4)

General purpose:

/headers contains standard definitions

/params contains files that provide inputs to the pipeline

/utils contains commonly used functions

/examples contains simple examples to show how to use

the software

ARCONS-pipeline (5)

Pipeline components:

/cosmic contains a module for cosmic ray cleaning

/wavelengthcal contains a module to do

wavelength calibration

/flatcal contains a module for normalizing the

QE as a function of wavelength between pixels

/fluxcal contains a module to calibrating the system

compared to a standard star

/astrometry contains a module to determine the

RA and DEC of each photon

/skysub contains a module to subtract the sky background

ARCONS-pipeline (6)

/imagecube contains a module to generate a FITS

image cube based on an observations (no timing info)

/legacy contains ARCONS analysis code that predates

this repository

/quicklook contains tools for quickly looking at ARCONS

h5 files

/beammap contains tools for creating, viewing, and

modifying beam maps

/hotpix contains tools for finding location and time of

hot (and possibly ’cold’) pixels

Each directory contains a /test subdirectory with unittests

Make a Picture! (1)

#

Look at a .h5 file from the Palomar 2011 run

Make a FITS image of the photons

Use the /beammap/beamimage information to gt the list of roach board/pixel/time

#

Set the environment variable MKID_DATA_DIR to point to the data location

#

Example use:

#

$ export MKID_DATA_DIR=/Volumes/data/Palomar2011/Pal20110728

python palomar-2011.py obs_20110729-151443.h5

import sys, os

import tables

import pyfits

import numpy as np

Make a Picture! (2)

if (len(sys.argv) < 2):

print "Usage: ",sys.argv[0]," hdf5FileName"

sys.exit(1)

make the full file name by joining the input name to the MKID_DATA_DIR (or .)

hdf5FileName = sys.argv[1]

dataDir = os.getenv(’MKID_DATA_DIR’,’.’)

hdf5FullFileName = os.path.join(dataDir,hdf5FileName)

print "full file name is ",hdf5FullFileName

if (not os.path.exists(hdf5FullFileName)):

print "file does not exist: ",hdf5FullFileName

sys.exit(1)

open the actual file. This might take a while

fid = tables.openFile(hdf5FullFileName, mode=’r’)

Make a Picture! (3)

get the beam image. This is a 2d array of roach board/pixel/time locations

beamImage = fid.getNode("/beammap/beamimage")

Make a 2d array to hold the image

shape = beamImage.shape

Make a Picture! (4)

pixels = np.zeros(shape,dtype=np.uint32)

count the total number of photons in the file

nPhoton = 0

iRow = -1

for rows in beamImage:

iRow += 1

iCol = -1

for pixel in rows:

iCol += 1

sum = 0

for sec in fid.getNode(pixel):

for packet in sec:

here is the 64-bit number.

packet = int(packet)

nPhoton += 1

sum += 1

pixels[iRow][iCol] = sum

Make a Picture! (5)

print "nPhoton=",nPhoton

hdu = pyfits.PrimaryHDU(pixels)

hdu.writeto(’new.fits’)

Conclusion

It turns out that this is NOT the best way to access information.

In the util package, there is ObsFile, which does much of this, and
adds corrections, such as hot pixel detection, DA timing issues,
wavelength calibration, etc.

Julian is working on integrating all calibrations and corrections to
yield a “photon list.”

Within a week you can be productive in this new environment.
Lots of experience to leverage. The group is very responsive to
question, bugs, and requests!

