Mapping Redshift Space: HIM & MKIDs & Photometric Surveys

MKIDs and Cosmology 26 August 2013 Fermilab Batavia, USA

Albert Stebbins Fermilab Tzu-Ching Chang & Jean Coupon ASIAA, Taiwan

HI Intensity Mapping not Vaporware!

HI Intensity Mapping not Vaporware!

100m

HI Intensity Mapping not Vaporware!

Green Bank Telescope results

Canadian Hydrogen Intensity Mapping Experiment DRAO, British Columbia construction phase

夭籁 / Tianlai / "Heavenly Sound" Xinjiang, China

>20,000 sq. deg. at a time

Redshift Resolution Unlike Optical / IR for 21cm Redshift Determination is Easy and Cheap FFT RF spectral analyzer of incoming signal (1GHz). Imaging and spectroscopy in same observation.

θ~λ/D

Angular Resolution is more challenging for 21cm than for optical / IR because of diffraction limit.

- Need 100m telescope for only 10' resolution!
- Fortunately cost per unit area is small.

INTENSITY MAPPING

do not resolve galaxies

do resolve LSS / BAO

Peterson et al 2006 Wang et al 2006 Seo et al. 2010.

Expensive to resolve individual galaxies (e.g. SKA) instead only resolve what is needed for BAO features!

NON-GAUSSIAN INTENSITY MAPS

DEEP2

Davis ++ 2004++

see Wang ++ 2006

NON-GAUSSIAN INTENSITY MAPS

Davis ++ 2004++

NON-GAUSSIAN INTENSITY MAPS

Davis ++ 2004++

Foreground Subtraction

More detailed simulation of residual foreground contamination for a cylinder telescope

Shaw et al. 2013

2 x 15m x 100m cylinders 2 x 60 dual polarization feeds $T_{sys} = 50K$

2 full years observation time

Better Together spectral resolution of HI intensity mapping survey angular resolution photometric optical / IR survey

Better Together

spectral resolution of HI intensity mapping survey angular resolution photometric optical / IR survey

Naive Combination:

inverse variance weighted estimates in k-space

 $\delta\rho/\rho(\mathbf{k}) = \left(\sigma_{\text{opt}}(\mathbf{k})^2 \,\delta\rho/\rho_{\text{HI}}(\mathbf{k}) + \sigma_{\text{HI}}(\mathbf{k})^2 \,\delta\rho/\rho_{\text{opt}}(\mathbf{k})\right) / \left(\sigma_{\text{opt}}(\mathbf{k})^2 + \sigma_{\text{HI}}(\mathbf{k})^2\right)$

Better Together

spectral resolution of HI intensity mapping survey angular resolution photometric optical / IR survey

Naive Combination:

inverse variance weighted estimates in k-space

 $\delta\rho/\rho(\mathbf{k}) = \left(\sigma_{\text{opt}}(\mathbf{k})^2 \,\delta\rho/\rho_{\text{HI}}(\mathbf{k}) + \sigma_{\text{HI}}(\mathbf{k})^2 \,\delta\rho/\rho_{\text{opt}}(\mathbf{k})\right) / \left(\sigma_{\text{opt}}(\mathbf{k})^2 + \sigma_{\text{HI}}(\mathbf{k})^2\right)$

Alfalfa Survey

400/h Mpc

Giovanelli, Haynes, ++ 2005++

11

400/h Mpc

Giovanelli, Haynes, ++ 2005++

11

Slice Through ALFALFA Catalog

Slice through ALFALFA w/ Linewidth

ALFALFA @ z=1 w/ 10' beam

Alfalfa Survey

300/h Mpc

Moved to z=1 Convolved with 10' beam

Giovanelli, Haynes, ++ 2005++

Alfalfa Survey

Moved to z=1 Convolved with 10' beam

Giovanelli, Haynes, ++ 2005++

ALFALFA slice @ z=1 w/ $\sigma_z = 0.01$

Photometric+MKID Survey¹⁶

z=1, σ_z = 0.1 ALFALFA distribution

Composite: HI + Optical w/ Answers

How To Use Non-Gaussianity II Ζ Ambiguity HI in galaxy locations θ k_{ll} LSST HI+LSST 20 k⊥

How To Use Non-Gaussianity III

Prior HI knowledge of galaxy clustering should be θ used LSST HI 21 LSST

Monday, August 26, 13

Ζ

How To Use Non-Gaussianity III

Prior knowledge of galaxy clustering θ should be used

HI+LSST

k⊥

21

Monday, August 26, 13

Ζ

HI

k_{ll}

 Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.
 - "high precision but limited accuracy redshifts"

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.
 - "high precision but limited accuracy redshifts"
- The transition between high ambiguity and low ambiguity is $\Delta z \sim 0.01$

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.
 - "high precision but limited accuracy redshifts"
- The transition between high ambiguity and low ambiguity is $\Delta z \sim 0.01$
 - MKID territory!

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.
 - "high precision but limited accuracy redshifts"
- The transition between high ambiguity and low ambiguity is $\Delta z \sim 0.01$

22

- MKID territory!
 - •has this been demonstrated?

- Since the HI profile and/or the galaxy angular distribution is non-Gaussian one can improve upon mode by mode analysis for power spectrum.
- IF there is more than one "line" per galaxy/group AND more than one galaxy/group per line THEN there will be ambiguity in the galaxy redshifts.
 - "high precision but limited accuracy redshifts"
- The transition between high ambiguity and low ambiguity is $\Delta z \sim 0.01$
 - MKID territory!
 - •has this been demonstrated?
 - conventional photo-z's have very high ambig²uity

Improved maps are obtained with

•Improved maps are obtained with

• better HI angular resolution

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties
- •How does one quantify the information that is gained by the non-linear synergies

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties
- •How does one quantify the information that is gained by the non-linear synergies

• In terms of power spectra.

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties
- •How does one quantify the information that is gained by the non-linear synergies
 - In terms of power spectra.
 - Ambiguity errors are very non-Gaussian!

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties
- •How does one quantify the information that is gained by the non-linear synergies
 - In terms of power spectra.
 - Ambiguity errors are very non-Gaussian!
 - Higher order statistics?

- Improved maps are obtained with
 - better HI angular resolution
 - better photometric redshifts
 - \bullet better estimates of M_{HI} from optical/IR properties
- •How does one quantify the information that is gained by the non-linear synergies
 - In terms of power spectra.
 - Ambiguity errors are very non-Gaussian!
 - Higher order statistics?
 - More precise inferences can be obtained using, e.g. a Monte Carlo Markov Chain. 23

 Current HI Intensity mapping (HIM) efforts in North while next generation photometric surveys are in South (DES, LSST, KDUST, ...)

- Current HI Intensity mapping (HIM) efforts in North while next generation photometric surveys are in South (DES, LSST, KDUST, ...)
 - How close can HIM survey look toward the Southern Horizon.

- Current HI Intensity mapping (HIM) efforts in North while next generation photometric surveys are in South (DES, LSST, KDUST, ...)
 - How close can HIM survey look toward the Southern Horizon.
 - Angular resolution degraded toward South unless one has changing baselines.

- Current HI Intensity mapping (HIM) efforts in North while next generation photometric surveys are in South (DES, LSST, KDUST, ...)
 - How close can HIM survey look toward the Southern Horizon.
 - Angular resolution degraded toward South unless one has changing baselines.
- Does this complement / compete w/ optical /IR spectroscopic efforts (Euclid, BigBOSS, DESpec, ...)

- Current HI Intensity mapping (HIM) efforts in North while next generation photometric surveys are in South (DES, LSST, KDUST, ...)
 - How close can HIM survey look toward the Southern Horizon.
 - Angular resolution degraded toward South unless one has changing baselines.
- Does this complement / compete w/ optical /IR spectroscopic efforts (Euclid, BigBOSS, DESpec, ...)
 - these mostly target early type (luminous red) galaxies in dense environments in contrast to HI in late type galaxies in less dense environments.

Provocative Question

•Can you do Intensity Mapping with MKIDs?

- multiple redshifts from blended galaxies?
- few detectors needed on focal plane
- use all the photons

 At worst HI intensity mapping LSS surveys are complementary to photometric LSS surveys such as LSST.

- At worst HI intensity mapping LSS surveys are complementary to photometric LSS surveys such as LSST.
- At best there is "non-linear" synergy between them that makes the combined LSS maps better than the sum of it's parts.

- At worst HI intensity mapping LSS surveys are complementary to photometric LSS surveys such as LSST.
- At best there is "non-linear" synergy between them that makes the combined LSS maps better than the sum of it's parts.
- Complementarity / redundancy w/ other spectroscopic surveys? (Euclid, BigBOSS/DESpec, 4MOST)

- At worst HI intensity mapping LSS surveys are complementary to photometric LSS surveys such as LSST.
- At best there is "non-linear" synergy between them that makes the combined LSS maps better than the sum of it's parts.
- Complementarity / redundancy w/ other spectroscopic surveys? (Euclid, BigBOSS/DESpec, 4MOST)
 - HI most useful at higher z (>2).
Conclusions

- At worst HI intensity mapping LSS surveys are complementary to photometric LSS surveys such as LSST.
- At best there is "non-linear" synergy between them that makes the combined LSS maps better than the sum of it's parts.
- Complementarity / redundancy w/ other spectroscopic surveys? (Euclid, BigBOSS/DESpec, 4MOST)
 - HI most useful at higher z (>2).

•We soon will know better if HI intensity mapping for LSS lives up to it's promises (e.g. CHIME, TianLai, BINGO, BAOBAB, ...) 26