Search for Cosmic Background Neutrino Decay with STJ detectors

Yuji Takeuchi (Univ. of Tsukuba) Aug. 27, 2013 MKIDs and Cosmology workshop Fermilab WH3NW

Contents

- Motivation
- STJ development
 - Hf-STJ
 - Nb/Al-STJ response
 - SOI-STJ

Collaboration Members (Japan-US collab.: Search for Neutrino Decay)

• As of Aug. 2013

Japan Group

Shin-Hong Kim, Yuji Takeuchi, Kenji Kiuchi, Kanai, Kazuki Nagata, Kota Kasahara, Tatsuya Ichimura, Takuya Okudaira, Kouya Moriuchi, Ren Senzaki (University of Tsukuba), Hirokazu Ikeda, Shuji Matsuura, Takehiko Wada (JAXA/ISAS),

- Hirokazu Ishino, Atsuko Kibayashi, Yasuki Yuasa(Okayama University), Takuo Yoshida, Yusuke Shimizu, Mikiya Nagashima (Fukui University), Satoshi Mima (RIKEN),
- Yukihiro Kato (Kinki University),
- Masashi Hazumi, Yasuo Arai (KEK)

US Group

Erik Ramberg, Mark Kozlovsky, Paul Rubinov, Dmitri Sergatskov, Jonghee Yoo (Fermilab)

Korea Group Soo-Bong Kim (Seoul National University)

Cosmic neutrino background (CvB)

Motivation

- Search for $v_3 \rightarrow v_{1,2} + \gamma$ in cosmic neutrino background (CvB)
 - Direct detection of $C\nu B$
 - Direct detection of neutrino magnetic moment
 - Direct measurement of neutrino mass: $m_3 = (m_3^2 m_{1,2}^2)/2E_{\gamma}$
- Aiming at sensitivity of detecting γ from ν decay for $\tau(\nu_3) = O(10^{17} \text{yr})$
 - Current experimental lower limit $\tau > 0(10^{12} \text{yr})$
 - SM expectation $\tau = O(10^{43} \text{yr})$
 - L-R symmetric model (for Dirac neutrino) predicts $\tau = O(10^{17} \text{yr})$

Photon Energy in Neutrino Decay

$$v_3 \to v_{1,2} + \gamma$$
 $E_{\gamma} = \frac{m_3^2 - m_{1,2}^2}{2m_3}$

- From neutrino oscillation
 - $\Delta m_{23}^2 = |m_3^2 m_2^2| = 2.4 \times 10^{-3} \, eV^2$
 - $\Delta m^2_{12} = 7.65 \times 10^{-5} \, eV^2$
- From CMB fit (Plank+WP+highL+BAO)

$$-\sum m_i < 0.23 \text{ eV}$$

m₃=50meV

→ 50meV< m_3 <87meV, E_{γ} =14~24meV

E_v =24meV

5

 $m_2=8.7 \text{meV}$ \downarrow $E_{\gamma}=4.4 \text{meV}$ 25 meV $m_1=1 \text{meV}$ \downarrow $E_{\gamma}=4.4 \text{meV}$

Feasibility of photon detection from $C\nu B$ decay

CIB (w/ 2% energy resolution)

Statistical uncertainties in N_{ν} are taken into account in the error bars

CMB

銀河系ダスト放射

Galactic dust emission

Wavelength[µm]

 \rightarrow We can detect photon from CvB decay

photon at 6.7σ significance

E [meV]

1000

Neutrino lifetime lower limit from AKARI data

Journal of the Physical Society of Japan 81 (2012) 024101

DOI: 10.1143/JPSJ.81.024101

Published in Jan. 2012

FULL PAPERS

Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum

Shin-Hong Kim*, Ken-ichi Takemasa, Yuji Takeuchi, and Shuji Matsuura1

 ν_3 lifetime lower limit as a function of m_3 x10¹² yr AKARI CIB data after subtracting foregrounds (10² x ... mMu) vp/lp v lifetime limit (year) 3.8 Best fit E_{ν} spectrum from CvB decay $\chi^2 = 3.5$ 3.7 $\tau = (4.9 \pm 1.5) \times 10^{12} \text{ year}$ 3.6 $=(1.5\pm0.5) \times 10^{20}$ sec 3.5 10 | $m_3 = 50 \text{ meV}$ 3.4 3.3 3.2 10²⁰ sec ΊĒ 3.1 10-3 10⁻² 0.05 0.06 0.07 E , (eV) m_ (eV) $m_3 = 50 \text{ meV} \sim 150 \text{ meV}$

Fit CIB data to E_{γ} spectrum expected from ν decay assuming all contribution to CIB is only from ν decay

Detector requirements

- Requirements for detector
 - Energy measurement for single photon with better than 2% resolution for $E_{\gamma} = 25 \text{meV} (\lambda = 50 \mu \text{m}, \text{ far infrared photon})$
 - Rocket and satellite experiment with this detector
- Superconducting Tunneling Junction (STJ) detectors in development
 - Array of 50 Nb/Al-STJ pixels with diffraction grating covering $\lambda = 40 80 \mu m$
 - For rocket experiment aimed at launching in 2016 in earliest, aiming at improvement of lower limit for $\tau(v_3)$ by 2 order
 - STJ using Hafnium: Hf-STJ for satellite experiment (after 2020)
 - $\Delta = 20 \mu eV$: Superconducting gap energy for Hafnium
 - $N_{\text{q.p.}} = 25 \text{meV}/\Delta = 735$ for 25meV photon: $\Delta E/E < 2\%$ if Fano-factor is less than 0.3

Energy resolution of STJ

Energy resolution of STJ is limited by fluctuation of number of quasi-particles
Smaller superconducting gap energy gives better energy resolution

By K. Nagata

Hf(250nm)

Hf-STJ development

 We succeeded in observation of Josephson current by Hf-HfOx-Hf barrier layer for the first time in the world in 2010

However, to use this as a detector, much improvement in leak current is required. (I_{leak} is required to be at pA level or less)

Far Infrared Photon Spectroscopy with

Diffraction Grating + Nb/Al-STJ Array

- Diffraction grating covering $\lambda = 40 80 \mu m$ (16-31meV)
- Array of Nb/AI-STJ pixels
 - □ We use each Nb/Al-STJ pixel as a single-photon counting detector with extremely good S/N for FIR photon of $E_{\gamma} = 16 \sim 31 \text{meV}$
 - □ $\Delta = 1.5$ meV for Nb: $N_{q.p.} = 60 \sim 120$ (assuming x10 for back-tunneling gain)
 - □ Expected average rate of photon detection is ~12kHz for a single pixel
- Developing ultra-low temperature preamplifier to achieve noise<16e with Fermilab group

Assuming $1\mu s$ for STJ response time, for 25meV single photon counting

STJ leak current <0.1nA

Temperature dependence of Nb/Al-STJ leak current

This Nb/Al-STJ is provided by S. Mima (Riken)

100x100um² Nb/AI-STJ I-V curve

If assume leak current is proportional to junction size, can achieve 0.1nA leak current to $\sim 100 \mu m^2$ junction size

by T. Okudaira Nb/AI-STJ response to NIR photons

(Assuming incident photon statistics)

Back-tunneling gain 45 (assuming 40

photons corresponds 120fC)

Signal charge distribution

13

By Kota Kasahara

Development of SOI-STJ

• SOI: Silicon-on-insulator

- CMOS in SOI is reported to work at 4.2K by T. Wada (JAXA), et al.

- A development of SOI-STJ for our application with Y. Arai (KEK)
 - STJ layer sputtered directly on SOI pre-amplifier
- Started test with Nb/AI-STJ on SOI with p-MOS and n-MOS FET

Development of SOI-STJ by K. Kasahara

- We formed Nb/Al-STJ on SOI
- Josephson current observed
- Leak current is 6nA @V_{bias}=0.5mV, T=700mK
 - n-MOS and p-MOS in SOI on which STJ is formed
 - Both n-MOS and p-MOS works at T=750~960mK

Summary

- We propose an experiment to search for neutrino radiative decay in cosmic neutrino background
 - There is some chance to observe to neutrino radiative decay if we assume L-R symmetric model
- We are developing a detector to measure single photon energy with <2% resolution for $E_{\gamma} = 25 \text{ meV}$.
 - Nb/AI-STJ array with grating and Hf-STJ are being considered
- We've confirmed to SIS structure in our Hf-STJ prototypes
 - Much improvement in leakage current is required for a practical use
- Development of readout electronics for Nb/AI-STJ is underway
 - As the first milestone, aiming to single NIR photon counting
 - Several ultra low temperature amplifier candidates are under development. SOI-STJ is one of promising candidates

Backup

Energy/Wavelength/Frequency

 $\nu = 6 \text{ THz}$

 $\lambda = 50 \mu m$

Feasibility of FIR single photon detection

- Assume typical time constant from STJ response to pulsed light is ~1µs
- Assume leak current is 0.1nA

 $0.1nA = 6.25 \times 10^8 e/s = 6.25 \times 10^2 e/\mu s$

Fluctuation due to electron statistics in 1µs is

 $\sqrt{6.25\times 10^2}e/\mu s=25\,e/\mu s$

While expected signal charge for 25meV are

 $25 \text{meV}/1.7\Delta \times 10e = \frac{25 \text{meV}}{1.7 \times 1.5 \text{meV}} \times 10e = 98e$

(Assume back tunneling gain x10)

More than 3sigma away from leakage fluctuation