
(g − 2) in QED and Beyond

1 A brief introduction

Anomalous magnetic moment of the electron is one of the crowning achievements of Quantum
Electrodynamics (QED) in particular, and of Quantum Field Theory in general. Experimen-
tal and theoretical calculations agree to about one part in a trillion [1].

The anomalous magnetic moment of the muon is sensitive to states beyond the Standard
Model. These states could be heavier than what we can produce at colliders; they might
couple dominantly to leptons, making harder to produce at hadron colliders. The muon
(g−2) measurement then provides an interesting way to probe these new states, by measuring
their tiny effect with a highly sensitive experiment.

To compare theory and experiment, highly technical calculations are involved. QED
calculations have to be performed at high order, where the number of Feynman diagrams
increase to hundreds. Contributions from hadronic physics becomes important at such high
precision. These cannot be calculated using Feynman diagrams and require input from either
experimental measurement, or novel theoretical techniques (a lot of progress is being made
in this direction using lattice QCD, which will be covered in detail in forthcoming lectures
in this series).

In this note we will focus on the calculation of first radiative corrections to the lepton
g − 2, and briefly comment on estimating one-loop corrections from new physics.

2 What to calculate?

Let’s start with a classical system. The magnetic moment of a classical current carrying loop
of wire is given by,

~µ = I~s (1)

where I is the current through the loop, and ~s is the vector area. In presence of magnetic
field, the loop experiences a torque, and there is a potential energy associated with the
orientation of the loop relative to the magnetic field,

U = −~µ. ~B (2)
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That is, the configuration where the loop is aligned with the magnetic field has lower potential
energy.

For simplicity, let us imagine a circular loop with a charge q traveling along the loop with
angular velocity ω, as shown in figure 1. Then,

~µ =
q

2π/ω
πa2ẑ (3)

since the current is given by a charge q traversing the loop per revolution. We can rewrite
this as,

~µ =
q

2m
ωma2ẑ =

q

2m
~L (4)

where L is the angular momentum of the charged particle about the origin of the loop.

Figure 1: A charge running around a loop of wire.

We see that classically, the magnetic dipole moment is proportional to the angular mo-
mentum of charged particles. This continues to be true in quantum mechanics (including the
spin angular momentum for particles), with a small difference. For example, for an electron
at rest, the magnetic dipole moment is given by,

~µe = g
e

2me

~S (5)
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Figure 2: Tree level diagram for a lepton scattering off a background classical field.

where ~S is the spin operator. Analogously, in presence of a classical magnetic field, the spin
of the electron prefers to be aligned with the magnetic field. The interaction Hamiltonian is,

Hint = −~µ · ~B (6)

In order to calculate the QED prediction for the muon (electron) magnetic moment, we
need to compare the QED interaction of the electron with a classical background field.

Let us focus on the tree level contribution first (figure 2). The interaction Lagrangian
density at tree level is given by,

Lint = −eℓ̄(x)γµℓ(x)Aµ(x) (7)

where we have denoted the classical field by A, and the lepton (electron/muon) by ℓ.
The way to connect this relativistic Lagrangian density with the non-relativistic quantum

mechanical potential is to compare the scattering amplitudes. The tree-level scattering
amplitude in momentum space is given by,

iM = ū(p′)(−ieγµ)u(k) Ãµ(q) (8)

where u, ū are plane-wave solutions to the Dirac equation, and Ãµ(q) is the Fourier-transform
of the classical field, and q = p′ − p. Since we are interested in time-independent field
configurations,

Ãµ(q) = Ãµ(~q)δ(q
0) (9)
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The vector potential corresponding to a static magnetic field is given by Aµ = (0,~A), with
the magnetic field given by

~B(x) = ∇× ~A (10)

⇒ B̃k(~q) = −iǫijkqiAj(~q) (11)

We now set the scattering amplitude from the non-relativistic theory equal to the one above,
obtained from the relativistic theory. The electron couples in two different ways to the
magnetic field (or the 3-vector potential): one via its spin, and the other via its motion (~p,
which can also be thought of as orbital angular momentum). To isolate the spin coupling,
we set ~p = 0. Since the magnetic field is linear in ~q, we retain a non-zero ~q, but work to
linear order.

The non-relativistic answer is easily obtained using the Born approximation. Comparing
the two,

−i〈µk〉B̃k(~q) = +ie ū(p′)γku(k) Ãk(q) (12)

with p′ = (m, ~q/2), k = (m,−~q/2). (Note p′2 = k2 = m2 is satisfied to linear order in q.)
Therefore, in order to pick out the magnetic moment, we need to pick out the term

proportional to ~q from the spinor,

−i〈µk〉
[
−iǫijkqi Ãj(~q)

]
= +ie ū(p′)γju(k) Ãj(q) (13)

Let us expand the spinor on the r.h.s in the non-relativistic limit

u(k) =

( √
k · σξ√
k · σ̄ξ

)
(14)

where as usual, the square root of a matrix is understood to pick out the square root of
eigenvalue when acting on an eigenvector.

In the non-relativistic limit,

√
k · σ =

√
m−

(
−1

2

)
~q · ~σ ≈ √

m(1 +
1

2
~q · ~σ/2m) (15)

√
p′ · σ =

√
m−

(
1

2

)
~q · ~σ ≈ √

m(1− 1

2
~q · ~σ/2m) (16)
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Therefore,

ū(p′)γku(k) =

( √
p′ · σξ′√
p′ · σ̄ξ′

)†(
0 1

1 0

)(
0 σµ

σ̄µ 0

)( √
k · σξ√
k · σ̄ξ

)
(17)

= mξ′†
(
(1− 1

4m
~q · ~σ)σ̄k(1 +

1

4m
~q · ~σ) + (1 +

1

4m
~q · ~σ)σk(1− 1

4m
~q · ~σ)

)
ξ

(18)

≈ mξ′†
(
σ̄k + σk +

1

4m
~q · ~σ(σk − σ̄k)− (σk − σ̄k)

1

4m
~q · ~σ

)
ξ (19)

=
1

2
ξ′†qi

(
σiσk − σkσi

)
ξ (20)

=
1

2
ξ′†

[
2iǫikjσj

]
qiξ (21)

= 2iǫikjqiξ
′†σ

j

2
ξ (22)

= − i

m
ǫijkqi〈Sj〉 (23)

remembering that the relativistic states are normalized as,

〈Sj〉 = 2mξ†Sjξ (24)

due to the relative factor of 2m in the normalization of relativistic states.
Comparing with the non-relativistic result,

−i〈µk〉
[
−iǫijkqi Ãj(~q)

]
= −ie 1

m
〈Sk〉

[
−iǫijkqi Ãj(q)

]
(25)

〈µk〉 = e

m
〈Sk〉 = g

e

2m
〈Sk〉 (26)

which is to say, that the leading order prediction of QED is g = 2.

2.1 Higher order corrections

The radiative corrections to the calculation above can be compactly written as,

iM = −ie ū(p′)Γµu(k)Aµ (27)
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Using equations of motion and gauge invariance, the most general form of Γµ can be
deduced to be,

Γµ(p, q) = F1(q
2)γµ + F2(q

2)
iσµνqν
2m

(28)

Remember we need to work to linear order in qi.

i

2m
ū(p′)σkνqνu(k) =

i

2m
ξ′†

(−i
2m

ǫijkqjσk

)
ξ (29)

Therefore, we only need the form factors at 0 momentum transfer,

ū(p′)Γµ(p, q)u(k) =
i

2m
ξ′†

(−i
2m

ǫijkqjσk

)
ξ[F1(0) + F2(0)] (30)

From above, it is clear that,

g = 2(F1(0) + F2(0)) (31)

Due to gauge invariance, to all orders F1(0) = 1. Therefore, the contribution from F1 is
always g = 2. The correction, g − 2 then arises solely from F2. The anomalous magnetic
moment is written as,

a =
g − 2

2
= F2(0) (32)

2.2 One loop diagrams

The one loop diagrams relevant are shown in figure 3. To calculate the one loop contribution
to the matrix element, we use the following master formula,

〈S〉 = (
√
Z2)

2ū(p′)[Amputated one loop diagram]u(k) (33)

where Z2 is the wavefunction renormalization, calculated at one loop, for the electron. Note
that there is no wavefunction renormalization included for the external classical field.

The wavefunction renormalization cancels the renormalization of the

F1(0) form factor of the vertex function to every order in perturbation

theory.
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Figure 3: One loop corrections to the magnetic moment. Wavefunction renormalization
diagram for the lepton (left) and amputated vertex correction.

3 Feynman diagram calculation

The tree-level contribution to F2 is absent. Therefore, the wavefunction renormalization
does not contribute. The entire one-loop correction to g − 2 then involves calculation of the
amputated vertex correction, and extracting the form factor F2(0).

In this section we will focus on the Feynman diagram calculation: the calculation of
of the lowest order radiative correction to the muon magnetic moment. This is a famous
calculation by Schwinger [4, 5], first performed for the electron (although he did not use
Feynman diagrams for his calculation). As we shall see, at this order, the magnetic moments
of the electron, muon and the tau lepton are identical. The Feynman diagram is shown in
figure 4.

This particular calculation involves three aspects which we will try to isolate:

1. Symmetry: The result of the diagram is constrained by gauge invariance, and the
charge conjugation and the parity symmetries of the QED Lagrangian.

2. Gamma matrix algebra: Much of the calculation involves simplification of Dirac gamma
matrices. We will adopt a method which is modular, easily generalized, and easily
implemented on a computer.

3. Loop integration: As with any loop diagram, the loop momentum is integrated over.
We will isolate all these integrations, and we will find that there are a only a few
distinct integrations we ever need to do (the so-called scalar integrals) and those have
been done and tabulated at e.g. [2].
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Figure 4: One loop correction to the electron/muon g − 2.

The method adopted will hopefully help in extending this calculation to an arbitrary 1-loop
contribution to g-2 (and perhaps other processes, or higher loop order).

Our strategy is to first expand the amplitude in terms of all structures allowed by sym-
metry. We pick out the terms which would survive in the limit we are interested in. Finally,
all such terms are cast in terms of scalar integrals i.e. loop integrals with only denominator
terms. We will find that the calculation converges nicely and we only need 2 or 3 simple
expressions for the integrals.

The scattering amplitude is written as,

iM = ū
(
p+

q

2

)[∫
d4−2ǫl

(2π)4−2ǫ
(−ieγα)

i(−/l +m)

(l2 −m2)
(−ieγµ) i(−

/l − /q +m)

((l + q)2 −m2
µ)
(−ieγβ)

−igαβ
(l + p+ q

2
)2

]
u
(
p− q

2

)

(34)

≡ −ieū
(
p+

q

2

)
Γµu

(
p− q

2

)
(35)

We can expand Γµ in a basis of Dirac matrices,

Γµ = cµ11+ Cµ
5 γ5 + Cµβ

v γβ + Cµβ
a γβγ5 + Cµαβ

s σαβ (36)
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where each co-efficient depends on pµ and qµ. The co-efficients have a Lorentz index, and so
we can expand them in terms of pµ and qµ.

We can use symmetries of the theory (here QED) to restrict the most general dependence.
Gauge invariance implies the Ward identity,

qµΓ
µ = 0 (37)

with or without q2 = 0. Since this is a matrix equation, this holds for each co-efficient
separately. Note that p · q = 0, and p2 = m2 − 1

4
q2, so the only scalar variable apart from

the masses we have is q2.
In a theory respecting C and P , C5 should vanish (and indeed does). Further, the

Levi-Civita tensor ǫµναβ also does not appear, except when multiplying a γµγ5, i.e. for Ca.
Therefore, all other co-efficients must be formed out of the four-vectors pµ, qα and the metric
tensor gµν .

Thus, the only non-zero co-efficients are,

Cµ
1 = c1(q

2) pµ (38)

Cµβ
v = cv1(q

2) pµpβ + cv2(q
2) pµqβ + cv3(q

2) gµβ (39)

Cµβ
a = ca4(q

2) ǫµαδβpαqδ (40)

Cµαβ
s = cs1(q

2) pµ(pαqβ − pβqα) + cs2(q
2) (gµαpβ − gµβpα) + cs3(q

2) (gµαqβ − gµβqα) (41)

It maybe looks like a hopeless mess to calculate all these coefficients, each of which is
a loop integral. Keep in mind that thus far, this expression applies to any contribution to
g − 2, as long as the symmetries are respected. If not, there can be additional terms, but it
is easy to generalize this method.

The good news is, there are only a couple of distinct loop integrations we need to do,
and further, only a subset of these co-efficients contributes to F2. Recall that we have not
yet used the equations of motion, and by doing so, we can cast the entire expression as,

Γµ = F1(q
2)γµ + iF2(q

2)
σµνqν
2m

(42)

The contribution from F1 is only at the tree level, and all corrections to F1(0) vanish.
Therefore, we are only interested in the co-efficients above which contribute to F2(0).

The simplification of various co-efficients can be found in section 7 in equation 121. From
there, we conclude that,

F2(0) = −(2mi)

(
− i

2
(c1(0) +mcv1(0)) + 2cs3(0)

)
− im2ca4(0) (43)
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3.1 Evaluating the coefficients

The co-efficients themselves can be easily evaluated in terms of the loop integral by using
traces (the equivalent of inner product for γ matrices). The one subtlety is to keep track on
the dependence number of dimensions we are working in, i.e. d = 4− 2ǫ. We should always
start with well-defined expressions, or in other words regulated integrals. In this note we
assume that all integrals will be carried out in 4− 2ǫ dimensions.

3.1.1 Extracting c1(0)

Tr. [Γµ] = 4c1(q
2) pµ =

∫
d4−2ǫl

(2π)4−2ǫ

−8ie2(−2 + ǫ)m(2lµ − qµ)

(l2 −m2)((l + q)2 −m2
µ)(l + p+ q

2
)2

(44)

To extract c1, we can take dot product with pµ, and divide by p2,

c1(q
2) =

1

p2

∫
d4−2ǫl

(2π)4−2ǫ

−2ie2(−2 + ǫ)m(2l · p)
(l2 −m2)((l + q)2 −m2

µ)(l + p+ q

2
)2

(45)

Now, since we are interested only in c1(0), we can set q = 0 in the above expression,
simplifying it immensely.

c1(q
2) =

1

p2

∫
d4−2ǫl

(2π)4−2ǫ

−2ie2(−2 + ǫ)m(2l · p)
(l2 −m2)2(l + p)2

(46)

Just to simplify notation, let us label (l + p) = Q. Then, c1 can be

c1(0) =

∫
1

p2
−2ie2(−2 + ǫ)m(Q2 − l2 − p2)

(l2 −m2)(l2 −m2
µ)(l + p)2

(47)

=
−2ime2(−2 + ǫ)

p2

[
IQ2

21 − I l2

21 − p2I21

]
(48)

where the short-hand I21 denotes the denominator, with 2 powers of l2−m2, and one of Q2.
The superscript denotes the numerator, which we always recast as Q2, l2 or powers thereof.

3.1.2 Extracting cv1(0)

Tr.
[
Γµγβ

]
= 4Cµβ

v = 4cv1(q
2) pµpβ + 4cv2(q

2) pµqβ + 4cv3(q
2) gµβ (49)
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Notice that, dotting this with (4 − 2ǫ)pβpµ − gµβ p
2 picks out cv1 (remember, p · q = 0 and

gαβgαβ = d = 4− 2ǫ).

[
(4− 2ǫ)pβpµ − gµβ p

2
]
Tr.

[
Γµγβ

]
= 4p4(3− 2ǫ)cv1(q

2) (50)

Tr.
[
Γµγβ

]
=

∫
d4−2ǫl

(2π)4−2ǫ

−8ie2(−1 + ǫ)
[
(m2 − l2 + l · q)gµβ + lµqβ + lβ(2lµ + qmu)

]

(l2 −m2)((l + q)2 −m2
µ)(l + p + q

2
)2

(51)

Therefore,

cv1(0) =
1

4p4
1

3− 2ǫ

[
(4− 2ǫ)pβpµ − gµβ p

2
] ∫ d4−2ǫl

(2π)4−2ǫ

−8i
[
(m2 − l2)gµβ + 2lβlµ

]

(l2 −m2)2(l + p)2
(52)

=
−4ie2(1− ǫ)

(3− 2ǫ)p4

∫
d4−2ǫl

(2π)4−2ǫ

l2m2 + 2(−2 + ǫ)(l · p)2
(l2 −m2)(l2 −m2

µ)(l + p)2
(53)

= −2ie2

9m4

(
(−6 + 5ǫ)

[
I l4

21 − 2IQ2l2

21 + IQ4

21 + I l2

21m
2 − 2IQ2

21 m
2 + I21m

4
]
+ 3ǫI l2

21m
2
)

(54)

where we have only retained terms to O(ǫ).

3.1.3 Extracting cs3(0)

In this case, this co-efficient only contributes at O(ǫ),

Tr.
[
Γµσλρ

]
= 4(Cµλρ

s − Cµρλ
s ) = 8ǫm(gµρqλ − gµλqρ) (55)

Compare this with our general expansion,

Cµαβ
s = cs1(q

2) pµ(pαqβ − pβqα) + cs2(q
2) (gµαpβ − gµβpα) + cs3(q

2) (gµαqβ − gµβqα) (56)

Thus,

cs3 = −e2ǫm (57)

3.1.4 Extracting ca4(0)

Tr.
[
Γµγβγ5

]
= 4Cµβ

a = 4ca4(q
2) ǫµαδβpβqδ (58)
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In our case

Tr.
[
Γµγβγ5

]
= 8e2ǫµαδβ

∫
d4−2ǫl

(2π)4−2ǫ

lαqδ
(l2 −m2)2(l + p)2

(59)

Or,

ca4(0)pα = 2e2
∫

d4−2ǫl

(2π)4−2ǫ

lα

(l2 −m2)2(l + p)2
(60)

This is simple to evaluate,

ca4(0) =
e2

p2

∫
d4−2ǫl

(2π)4−2ǫ

Q2 − l2 − p2

(l2 −m2)2(l + p)2
(61)

=
e2

m2

[
IQ2

21 − I l2

21 −m2I21

]
(62)

3.1.5 Collecting terms

Recalling,

F2(0) = −(2mi)

(
− i

2
(c1(0) +mcv1(0)) + 2cs3(0)

)
− im2ca4(0) (63)

we find that,

F2(0) = 2ie2
[
(−6 + 5ǫ)

(
I l4

21 − 2IQ2l2

21 + IQ4

21

)

+3I l2

21m
2 + 8ǫ I l2

21m
2 + 3IQ2

21 m
2 − 10ǫ IQ2

21 m
2 + 3I21m

4 + 23ǫ I21m
4
]

(64)

We still seem far from the answer. However, we have cast the integrations required in a
convenient form, so that we can algebraically reduce them to only 2 or 3 different integrals.
The reduction is shown in detail in section 6.3. After this reduction, we find,

F2(0) = 2ie2
(
−I11 +

1

3
I2 +

2

3
I1

)
+ 2ie2 ǫ

(
I11 −

1

9
I2 −

5

9
I1

)
(65)

Note that finite terms multiplying ǫ obviously do not contribute, and can be dropped.
Thus we have reduced the calculation to these three integrals. They are all divergent in

4 dimensions. However, we can see that the divergent piece cancels — this is easy to see,
since each of them has the same coefficient for the 1

ǫ
divergence, which clearly cancels in the

first term.
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We also see that we have not been carrying the second term needlessly. The 1/ǫ piece
does not cancel in the second term, and hence upon multiplying the ǫ out front, gives a finite
addition to the first term. Finally, putting together the result,

F2(0) =
e2

8π2
(66)

= (67)

4 Estimating contributions from heavier states

In principle, given a Lagrangian it is possible to calculate the g − 2 contributions explicitly.
It is much more convenient to be able to estimate a contribution quickly, however. The
estimate will of course not get factors of 2 (or even the sign, which in principle is crucial for
these calculations), but it can certainly give us an order of magnitude estimate whether it
is worth calculating the diagram in detail or not. It can also give us an idea of the relative
contribution to the electron and muon g − 2.

Here, we consider the correction to g − 2 from Z boson running in the loop instead of
a photon. This toy process will hopefully help clarifying the kind of tricks employed in
estimation of these diagrams.

Since we want to keep track of dependence on masses, we work in the approximation that
the electron/muon are massless, and include their mass terms as perturbations (insertions
in Feynman diagrams).

If we write the 4-component Dirac spinor as,

ℓ =

(
ℓL
ℓR

)
(68)

, we can see that ℓ̄σµνℓ couples ℓL to ℓR. This coupling is proportional to the mass for
Standard Model leptons. We have our first factor in the estimate: we need one lepton mass
insertion in the loop diagram.
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Consider next the Z-propagator,

gµν − QµQν

m2

Z

Q2 −m2
Z

(69)

Since we know that the full calculation yield finite answers (i.e. no divergence), we can
expand the momentum in the loop in powers of Q2/m2

Z . The leading contribution is,

1

m2
Z

(70)

This is our second factor in the estimate. Since there are no other scales in the problem,
this factor of m2

Z has to be made up by the mass of the lepton as well.
Thus, so far our estimate of the diagram reads,

mℓ

mℓ

m2
Z

(71)

We can put in a factor of g2e/16π2 to account for the loop-factor and the couplings.
Finally, we inspect figure 5 again. Even though the full calculation was convergent, by

removing the Q2 from the denominator, we have made the integral logarithmically divergent.
This is to say that the integral picks up equal contributions between the higher mass scale
(mZ) and the lower mass scale (mℓ). Since this is a large hierarchy of scales, the logs involved
can be numerically significant. Therefore, our final estimate is,

mℓ

m2
ℓ

m2
Z

g2e

16π2
log

[
m2

Z

m2
ℓ

]
(72)

to be compared with the tree-level estimate for the same operator: ∼ mℓ (due to the mass
insertion).

Therefore, aℓ ∼ (gℓ − 2) is approximately,

aℓ ∼
m2

ℓ

m2
Z

g2e

16pi2
log

[
m2

Z

m2
ℓ

]
(73)

In general the contribution of heavy states appears as the following operator in the low
energy theory,

mℓ

Λ2
ℓ̄σµνℓFµν (74)
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where F is the field strength tensor, and we have inserted a lepton mass term explicitly as
discussed above.

We know that the operator

1

2mℓ

ℓ̄σµνℓFµν (75)

produces aℓ ∼ α/π. Therefore, generically the higher dimensional operator contribution is,

m2
ℓ

Λ2

1

2m
ℓ̄σµνℓFµν ≈ α

π

m2
ℓ

Λ2
(76)

It is clear that the electroweak (and by the same token, new physics) contributions to
the electron g − 2 are severely suppressed due to its small mass. The τ lifetime is short, so
the measurement of gτ − 2 is difficult. Consequently, the best place to look for new physics
effects is the measurement of gµ − 2. This is why the measurement of the muon g − 2 is
interesting.

Figure 5: Feynman diagram for g − 2 of the electron/muon with the Z boson “integrated
out”.

5 Numerical values

We report some numerical values taken from [1].

5.1 Electron g − 2

The electron g − 2 is measured to be

(ae)exp = 1.15965218073(28)× 10−3 (77)
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(ae)SM = 1.15965218188(78)× 10−3 (78)

where the prediction uncertainty being dominated by the measurement uncertainty for α.

5.2 Muon g − 2

The experimentally measured value of aµ is

(aµ)exp = 11659208.9(5.4)(3.3)× 10−10 (79)

Various contributions to the theoretical calculation can be broken down as,

(aµ)SM = (aµ)QED + (aµ)EW + (aµ)Had (80)

where,

(aµ)QED = 116584718.09(0.15)× 10−11 (81)

using the value of α from ae (i.e. assuming no significant new contributions to ae.

(aµ)EW = 154(1)(2)× 10−11 (82)

(aµ)Had[LO] = 6923(42)(3)× 10−11 (83)

(aµ)Had[NLO] = 7(26)× 10−11 (84)

Combining,

(aµ)SM = 116591802(2)(42)(26)× 10−11 (85)

The errors are due to the electroweak, lowest-order hadronic, and higher-order hadronic
contributions. There is a discrepancy between this prediction and the measured value,

∆aµ = (aµ)exp − (aµ)SM = 287(63)(49)× 10−11 (86)

If this discrepancy becomes statistically more significant, this might be a signal of new
physics.
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6 Useful identities

6.1 Fermion spinors

These are the momentum space Dirac equation,

/pu(p) = mu(p) (87)

ū(p)/p = mū(p) (88)

The plane wave solutions have spinor coefficients, u(p) given by,

u(p) =

( √
p · σξ√
p · σ̄ξ

)
(89)

Note that we have chosen the outgoing momentum, p′ = p+ 1

2
q, and the incoming momentum,

k = p− 1

2
q.

ū(p′)/p
′u(k) = ū(p′)

(
/p +

1

2
/q

)
u(k) = mū(p′)ū(k) (90)

ū(p′)/ku(k) = ū(p′)

(
/p−

1

2
/q

)
u(k) = mū(p′)ū(k) (91)

Thus,

ū(p′)/pu(k) = mū(p′)ū(k) (92)

ū(p′)/qu(k) = 0 (93)

Also note that since p′2 = k2 = m2, p · q = 0.
Gordon’s identity is a particularly useful identity. It can be used to reduce the spinor

structures we need to worry about.

ū(p′)γµu(k) = ū(p′)

[
(k + p′)µ

2m
+
iσµν(p

′ − k)µ
2m

]
u(k) (94)

6.2 Gamma matrices

The Dirac gamma matrices satisfy,

{γµ, γν} = 2gµν (95)
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In the chiral basis,

γµ =

(
0 σµ

σ̄µ 0

)
(96)

γ5 =

(
−1 0
0 1

)
(97)

where σµ = (1, ~σ), σ̄µ = (1,−~σ).
Traces and contraction identities (in d-dimensions) can be found in the appendices of

Peskin and Schroeder [3].

6.3 Loop integrals

We use QCDloop developed here at Fermilab [2] for our loop calculation. The final result we
want is finite (i.e. it contains no divergence), but to get to that result we want a carefully
regulated integral, and see that divergences cancel.

For scalar integrals, analytic expressions are available. We only need expressions for
“bubble” and “triangle” diagrams (diagrams with 2 and 3 propagator terms in the denomi-
nator).

The integrals are notated as,

IN
pq =

∫
d4−2ǫl

(2π)4−2ǫ

N
[l2 −m2]p [(l + p)2]q

(98)

6.3.1 Reduction of integrals to scalar integrals

It is pretty simple to reduce all integrals we encounter to scalar integrals,

I l4

21 =

∫
d4−2ǫl

(2π)4−2ǫ

l4

(l2 −m2)2Q2
(99)

=

∫
d4−2ǫl

(2π)4−2ǫ

l2(l2 −m2) + l2m2

(l2 −m2)2Q2
(100)

=

∫
d4−2ǫl

(2π)4−2ǫ

l2

(l2 −m2)Q2
+ I l4

21 (101)

=

∫
d4−2ǫl

(2π)4−2ǫ

1

Q2
+m2I11 +m2I l2

21 (102)

= I01 +m2I11 +m2I l2

21 (103)
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Note also that,

IQ4

21 =

∫
d4−2ǫl

(2π)4−2ǫ

Q4

(l2 −m2)2Q2
(104)

=

∫
d4−2ǫl

(2π)4−2ǫ

Q2

(l2 −m2)2
(105)

=

∫
d4−2ǫl

(2π)4−2ǫ

l2 +m2 + 2l · p
(l2 −m2)2

(106)

=

∫
d4−2ǫl

(2π)4−2ǫ

l2 +m2

(l2 −m2)2
(107)

= 2m2I2 + I1 (108)

where we have used the property the l · p is odd, while the rest of the integrand is even in l.
In summary,

I l2
21 = I11 +m2I21 (109)

IQ2

21 = I2 (110)

IQ2l2

21 = m2IQ2

21 + I1 (111)

I l4

21 = m2(I11 + I l2

21) + I01 (112)

IQ4

21 = 2m2I2 + I1 (113)

6.4 Integrals required

These are the scalar integrals needed. All integrals are performed in 4 − 2ǫ dimensions [2].
As before, the scalar integrals are notated as,

Ipq =

∫
d4−2ǫl

(2π)4−2ǫ

1

[l2 −m2]p [(l + p)2]q
(114)

Thus,

I11 =
i

16π2

(
1

ǫ
+ 2− log(m2)− γ + log(4π)

)
(115)

I2 =
i

16π2

(
1

ǫ
− log(m2)− γ + log(4π)

)
(116)
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I1 =
im2

16π2

(
1

ǫ
+ 1− log(m2)− γ + log(4π)

)
(117)

The Euler-Mascheroni constant γ drops out of physical answers, as always.

6.5 Discrete symmetries of QED

The C, P and T transformation properties of various fermion bilinears are tabulated in
Peskin and Schroeder[3], Chapter 3. The classical electromagnetic field Aµ transforms exactly
like ψ̄γµψ, and therefore in QED the interaction ψ̄γµψAµ preserves all three symmetries
above separately. Consequently, QED loop corrections only produce terms respecting these
symmetries, a fact we have used to restrict the terms we investigate.

7 Co-efficient reduction

We use Gordon’s identity and the Dirac equation to reduce the co-efficients from their most
general form into F1 and F2 form factors. Since we have stated (without proof) that loop
contributions to F1 cancel, we are only interested in co-efficients which contribute to the F2

form factor.
The co-efficients which do contribute are,

c1 : c1p
µū(p′)u(k) = c1(mūγ

µu− i

2
ūσµνqνu) (118)

cv1 : cv1ū(p
′)pµ/pu(k) = cv1mū(p

′)pµu(k) = cv1m(mūγµu− i

2
ūσµνqνu) (119)

cs3 : cs3ū(p
′)σµβu(k)qβ (120)

ca4 : ca4ū(p
′)γβγ

5u(k)pαqδǫ
µαδβ = mca4ū(p

′)σµβqβu(k) (121)

The simplification for the co-efficient ca4 requires a bit of algebra,

ca4ū(p
′)γβγ

5u(k)pαqδǫ
µαδβ =

1

m
ca4ū(p

′)/p
′γβγ

5u(k)pαqδǫ
µαδβ (122)

=
1

m
ca4ū(p

′)γργβγ
5u(k)pαqδ(p+

q

2
)ρǫµαδβ (123)

=
1

m
ca4ū(p

′)(gρβ − iσρβ)γ
5u(k)pαqδ(p+

q

2
)ρǫµαδβ (124)

=
1

2m
ca4ū(p

′)σλκu(k)pαqδ(p+
q

2
)ρǫλκρβǫ

µαδβ (125)
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where we have used σµνγ5 = i
2
ǫµναβσαβ . Continuing,

1

2m
ca4ū(p

′)(σρβ)u(k)pαqδ(p+
q

2
)ρǫλκρβǫµαδβ =

1

m
ca4p

2ū(p′)(σµβ)qβu(k) (126)

= mca4ū(p
′)σµβqβu(k) (127)

The other co-efficients are irrelevant for this calculation. Some give 0 (identically, or at
q2 = 0),

cv2ū(p
′)pµ/qu(k) = 0 (128)

cs1ū(p
′)σαβu(k)p

αqβ =
i

2
cs1ū(p

′)
[
/p/q − /q/p

]
u(k) (129)

=
i

2
cs1ū(p

′)

[
(m− 1

2
/q)/q − /q(m+

1

2
/q)

]
u(k) ∼ q2ūu (130)

and others are prohibited by gauge invariance and other symmetries.

cs2ū(p
′)σµβu(k)pβ =

i

2
cs2ū(p

′)
[
γµ/p− /pγ

µ
]
u(k) (131)

=
i

2
cs2ū(p

′)

[
γµ(m+

1

2
/q)− (m− 1

2
/q)γ

µ

]
u(k) ∼ ūqµu (132)

Some co-efficients also only contribute to the F1 form factor,

cv3ū(p
′)γµu(k). (133)

Finally, the contributions to the F2 form factor can be summarized as,

F2(0) = −(2mi)

(
− i

2
(c1(0) +mcv1(0)) + 2cs3(0)

)
− im2ca4(0) (134)
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