The Allure of Natural Neutrinos

Fermilab Academic Lecture Series Thursday April 24, 2014 Ed Kearns Boston University

The Allure of Ultrasensitive Experiments

http://www.aspera-eu.org/images/stories/files/Roadmap.pdf

This lecture will be from an experimental perspective...

- What have we learned from these natural sources of neutrinos already?
- What are the experimental issues?
- What can we learn from them next?

For local interest: can one study these neutrinos with a massive underground LArTPC ?

Neutrino Composition of this Lecture

Cosmological Relic Neutrinos

http://physics.aps.org/articles/v3/57 Courtesy of Shankar Agarwal and Hume Feldman, University of Kansas; submitted to Mon. Not. R. Astron. Soc.

Cosmological Relic Neutrinos

$$< T_{\nu} > = 1.9 \text{ K}$$

 $< E_{\nu} > = 170 \ \mu \text{eV}$
 $\sum m_{\nu} < 0.3 \text{ eV}$
 $n_{\nu} = 168 \ \text{cm}^{-3}$

> 0.05 eV from v oscillation

x 1-100 from gravitational clustering

FIG. 2. Shape of the upper end of an allowed Kurie plot to be expected in a β^- decay if neutrinos are degenerate up to energy E_F , or in a β^+ decay if antineutrinos are degenerate.

$$\nu_e + {}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + e^{-}$$
 $T_e = Q_{\beta} \pm m_{\nu}$

+ for relic neutrino detection – tritium endpoint resolution $\sigma_{\rm NCB} (^{3}{\rm H}) v_{\nu} = (7.84 \pm 0.03) \times 10^{-45} {\rm cm}^{2}$

Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

arXiv:1307.47

Fascinating and challenging experimental techniques:

100 g of 3H, large area (graphene substrate) magnetic trajectory filter (like KATRIN) RF signal from cyclotron motion (like Project 8) high resolution calorimeter and TOF possible annual modulation Safti, Lisanti, Spitz, Formaggio arXiv:1404.0680v1

STATUS: prototyping the individual techniques

Solar Neutrinos

Kamiokande II and Super-K

neutrino scattering off atomic electrons

directional detection

Kamiokande II and Super-K

SNO

(2001) $v_e \text{ only:} \quad \Phi_{CC} = 1.76 \pm 0.11 \text{ x10^{-6} cm^{-1}s^{-1}}$ $v_e + v_{\mu} + v_{\tau}$: $\Phi_{NC} = 5.09 \pm 0.62 \text{ x10^{-6} cm^{-1}s^{-1}}$

Solar neutrinos have delivered:

- CC NC smoking gun
- * θ_{12} , Δm_{12} same as KamLAND
- * $v_1 v_2$ ordering (mass hierarchy)
- ✤ General picture of solar cycle (*pp*, *pep*, ⁷Be, ⁸B)

Indications...

day/night asymmetry from matter effect in the earth

Not yet:

- ✤ Spectral distortion of ⁸B
- ✤ hep neutrinos
- * CNO neutrinos (competing detailed solar models)

a tiny tension

Solar outlook

- ★ Hyper-K: bigger, but shallower, and probably lower photocoverage. E_{thresh} ≈ 7 MeV
- Borexino and SNO+ will try for pp, pep, CNO

ICARUS (simulation)

0.0 MeV

24

* Terrestrial Antineutrinos

Study heat production in the Earth's interior

Terrestrial Antineutrinos have been observed

* Supernova Neutrinos

Supernova Neutrinos

- ★ Guaranteed signal if you run long enough.
- ★ Enormous statistics in a megaton-scale detector.
- ★ Early warning before light and directional pointing
- Time profile and spectra of great astrophysical interest.
 Possibilities such as Si-burning and black hole formation.
- \bigstar Standard picture: Initial burst of ν_e and cooling tail of equal flavors
- ★ Matter effects in SN and in earth may be revealed.
- ★ May reveal fundamental neutrino physics as well.

Supernova Observables

Event Rates in Hyper-K

Entire inner volume (0.74 Mton) should be useable for SN burst.

165K – 230K IBD events 7K – 8K ES events

Enough Statistics to Distinguish SN Models

Directional Pointing

Mass Hierarchy Determination

Neutrino – antineutrino matter resonance swaps with Normal – Inverted Hierarchy

Size of neutronization burst may suggest hierarchy

Observation of shock wave in IBD events favors IH

LArTPC?

- * Complementary to WC $(v_e \text{ not anti-}v_e)$
- 1000's of events in 34kt
- Good energy correlation
- Photon trigger?
 Or trigger by nearby modest sized WC?

Channel	Events	Events
	Livermore model	GAVIM model
$\nu_e + {}^{40}\operatorname{Ar} ightarrow e^- + {}^{40}\operatorname{K}^*$	2308	2848
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$	194	134
$\nu_x + e^- \rightarrow \nu_x + e^-$	296	178
Total	2794	3160

Diffuse Relic Supernova Neutrinos

LArTPC? See challenges for solar neutrinos. Roughly 40 events in a 34 kt x 10 year exposure Remarkable improvement with Gd tagging of neutron.

Hyper-K LOI arXiv:1109.3262v1

Atmospheric Neutrinos

 $x=r/R_e$

Super-K I+II+III+IV Combined Dataset

Until recently, atmospheric neutrinos provided tightest constraint on θ_{23}

Atmospheric neutrinos have delivered:

- Discovery of neutrino oscillation
- * θ_{23} , Δm_{23}^2 same values as long-baseline experiments
- Oscillation pattern
- * v_{τ} appearance (3.8 σ)

Not yet:

- * Independent measurement of θ_{13}
- Mass hierarchy
- * Octant of θ_{23}
- * CP violation δ

Cosine Zenith Angle

Oscillograms: Graphical representations of neutrino mixing probability

First Octant minus Second Octant

Results: using reactor $\theta_{\tt 13}$ constraint

Not significant!

- Both free and constrained fits prefer 2nd octant
- 1.2 σ preference for inverted hierarchy sensitivity is 0.9 σ

Hyper-Kamiokande

Sensitivity studies simply scale SK result to large exposure, i.e. assume the same detector performance

Octant and CP- δ dependency

ICAL @ INO (Iron Calorimeter at India-based Neutrino Observatory)

- 50 kton mass
- 29000 RPCs
- 1.3T magnetic field
- Best acceptance for vertical muons
- 2-3σ MH in 5-10 years

PINGU (Precision IceCube Next Generation Upgrade)

1 1	1 1 1 1		5 I II.		
			sine Zenith Angle	$P(u_{\mu} \rightarrow$	(ν_{μ}) -0.9 0.8 0.7
11			Ö		0.6
			0		0.5
11					-0.3
11			-0.5		-0.2
					0.1
11			-1	1 10	10 ²
	1 11 1	-	1		Energy [GeV]
1		South and the second se	+ Enorm	ous statistics (25	5K evt/yr)
t –	1	Weiner Wilson	+ Full co	ntainment of 10	GeV νμCC
1			+ Possibl	e v/antiv by $d\sigma$	dy (ArXiv:1303.0758)
1			+ Recent	work includes s	hower (CC nu e)
ł			– No up/	'down normaliza	ition
	ł	4	– Zenith may be	acceptance & de	etector response control

Use IceCube and DeepCore as an active veto

3-4 Mton effective volume

10 GeV neutrinos – ideal for core resonance

Simulated 2 GeV anti-electron neutrino interaction e^+ p π^-

LArTPC

- High resolution:
- NC BG rejection
- Direction/energy (see all charged)
- v/anti-v handles
- Above are needed to compensate for modest mass
- Magnetize?

LBNE Sensitivity Studies via Performance Estimates

	Lepton (electron)	Lepton (muon)	Hadronic System
Angular Resolution	2°	2°	10°
Energy Resolution	10% / \sqrt{E}	2% (FC) 15% (PC)	$30\% / \sqrt{E}$

A. Guglielmi, Neutrino 2010, Ghandi et al., hep-ph/0807.2759.

A. Blake, LBNE

LBNE study	Neutrino (true)	Antineutrino (true)	Tag method(s)
ν_{e} -like	30%	6%	p ID only
Anti ν_{e} -like	43%	22%	p ID only
$\nu_{\mu}\text{-like}$	27% / 57%	5% / 0%	p ID / μ -e decay
Anti $\nu_{\mu}\text{-like}$	49% / 19%	19% / 24%	p ID / μ -e decay

Arguably – 34 kton LArTPC is more interesting than 500 kton WC!

http://arxiv.org/abs/1402.0467v2

Fig. 5. Sky map in equatorial coordinates of the TS value from the maximum likelihood point source analysis. The most significant cluster consists of five events—all showers and including the second highest energy event in the sample—with a final significance of 8%. This is not sufficient to identify any neutrino sources from the clustering study. The galactic plane is shown as a curved gray line with the galactic center at the bottom left denoted by a filled gray square. Best-fit locations of individual events (listed in Table 1) are indicated with vertical crosses (+) for showers and angled crosses (×) for muon tracks.

NEUTRINO2014 XXVI International Conference on Neutrino Physics and Astrophysics June 2-7, 2014, Boston, U.S.A.

Neutrino Composition of Neutrino 2014 Boston – See you again soon!

http://neutrino2014.bu.edu/

Registration fee goes up May 1! Hotels are pricey and filling up!