The Cosmic Microwave Background: How It Works

Albert Stebbins
Academic Lecture Series

Fermilab
2014-03-11

General Relativity

- Metric geometry

$$
d s^{2}=g_{\mu v} d x_{\mu} d x_{v} \quad g_{\mu v}=\left(\begin{array}{llll}
g_{\eta y} & g_{\eta x} & g_{\eta z} & g_{\eta z} \\
g_{\eta x} & g_{x x} & g_{x y} & g_{x z} \\
g_{\eta z} & g_{x y} & g_{y y} & g_{y z} \\
g_{\eta z} & g_{x z} & g_{y z} & g_{z z}
\end{array}\right)
$$

- 10 free functions reduced by 4 to 6 by coordinate freedom
- Can decompose according to helicity (2scalar+2vector+2tensor)

$$
\begin{gathered}
g_{\mu \nu}=a[\eta]^{2}\left(\bar{g}_{\mu \nu}+h_{\mu \nu}^{\mathrm{S}}+h_{\mu \nu}^{\mathrm{V}}+h_{\mu \nu}^{\top}\right) \quad d t=a[\eta] d \eta \\
\boldsymbol{g}_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad h_{\mu \nu}^{\mathrm{S}}=-2\left(\begin{array}{cc}
\Phi & 0 \\
0 & \Psi \boldsymbol{I}
\end{array}\right) \quad h_{\mu \nu}^{\mathrm{V}}=\left(\begin{array}{cc}
0 & \boldsymbol{h}^{\perp} \\
\boldsymbol{h}^{+} & 0
\end{array}\right) \quad h_{\mu \nu}^{\top}=\left(\begin{array}{cc}
0 & 0 \\
0 & \boldsymbol{H}^{+f}
\end{array}\right) \\
\boldsymbol{\nabla} \cdot \boldsymbol{h}^{\perp}=0 \quad \boldsymbol{\nabla} \cdot \boldsymbol{H}^{\text {Ltf }}=\operatorname{Tr}\left[\boldsymbol{H}^{\text {Ltf }}\right]=0
\end{gathered}
$$

- Dynamics: Einstein's Eq's: $G_{\mu v}=8 \pi G T_{\mu v}$

scalar	$\nabla^{2} \Psi$	$=4 \pi a^{2} G\left(\delta \rho-3 \frac{a^{\prime}}{a} \nabla^{-2}(\nabla \cdot \boldsymbol{S})\right)$	elliptical	$T^{\mu v}=\left(\begin{array}{cc}\rho & \boldsymbol{S} \\ \boldsymbol{S} & \boldsymbol{\Pi}\end{array}\right)$
scalar	$\nabla^{2}(\Phi-\Psi)$	$=$	$-12 \pi a^{2} G \frac{a^{\prime}}{a} \nabla^{-2} \boldsymbol{\nabla} \cdot\left(\nabla \cdot \Pi^{t t}\right)$	elliptical

Cosmic Relics:

- Photons: The 2.725K CMBR
- Neutrinos: (difficult to see directly) expect $T_{\mathrm{v}}=1.955 \mathrm{~K}$
- Baryons: (origin of baryon anti-baryon asymmetry unknown)
- Dark Matter: (origin unknown)
- Scalar Perturbation: inhomogeneities
- ?Tensor Perturbations: gravitational radiation
- Dark Energy (origin unknown - only important recently?)

^CDM Model

$$
\begin{aligned}
& p_{\mathrm{tot}} \cong-\Lambda+\frac{\pi^{2}}{90} \frac{\left(k_{\mathrm{B}} T_{\gamma 0}\right)^{4}}{(\hbar c)^{3}} \frac{2+\frac{7}{8}\left(\frac{4}{11}\right)^{\frac{4}{3}}\left(2 N_{v}^{\mathrm{eff}}\right)}{a^{4}} \\
& \rho_{\mathrm{b}} \cong \frac{3 H_{0}^{2}}{8 \pi G} \frac{\Omega_{\mathrm{b} 0}}{a^{3}} \quad \Omega_{\mathrm{bo}}^{\mathrm{BBN}} h^{2}=0.0215 \pm 0.0025(\mathrm{PDB}) h \equiv \frac{H_{0}}{100 \mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}} \\
& T_{\gamma \mathrm{b}} \cong \frac{T_{\gamma 0}}{a \sqrt[3]{\frac{1}{2} g .[a]}} \quad T_{\gamma 0}=2.72548 \pm 0.00057 \mathrm{~K}
\end{aligned}
$$

Inhomogeneities:

$$
\begin{aligned}
\Phi[\boldsymbol{x}, t]=\int d^{3} \boldsymbol{k} \boldsymbol{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{\Phi}[\boldsymbol{k}, t] & \lim _{t \rightarrow 0}\left\langle\tilde{\Phi}[\boldsymbol{k}, t] \tilde{\Phi}\left[\boldsymbol{k}^{\prime}, t\right]\right\rangle & =A_{\mathrm{S}} \boldsymbol{k}^{n \mathrm{~S}-4} \delta^{(3)}\left[\boldsymbol{k}-\boldsymbol{k}^{\prime}\right] \\
\boldsymbol{H}^{+t \mathrm{t}}[\boldsymbol{x}, t]=\int d^{3} \boldsymbol{k} \boldsymbol{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{\boldsymbol{H}}^{+\boldsymbol{t}}[\boldsymbol{k}, t] & \lim _{t \rightarrow 0}\left\langle\tilde{\boldsymbol{H}}^{t \rightarrow}[\boldsymbol{k}, t] \cdot \tilde{\boldsymbol{H}}^{ \pm t+}\left[\boldsymbol{k}^{\prime}, t\right]^{\dagger}\right\rangle & =A_{\mathrm{T}} \boldsymbol{k}^{n T}(\boldsymbol{l}-\hat{\boldsymbol{k}} \otimes \hat{\boldsymbol{k}}) \delta^{(3)}\left[\boldsymbol{k}-\boldsymbol{k}^{\prime}\right]
\end{aligned}
$$

Parameters: $T_{r o}, H_{0}, \Lambda, \Omega_{\mathrm{mo}}, \Omega_{\mathrm{bo}}, \Omega_{0}, \mathrm{~N}_{\mathrm{eff}}, A_{\mathrm{s}}, \mathrm{A}_{\mathrm{T}}, \mathrm{n}_{\mathrm{s}}, \mathrm{n}_{\mathrm{T}}, \mathrm{T}$

How to Describe the CMBR?

 Microscopic Description$E_{a}[\boldsymbol{x}, t] \propto \int d \nu e^{i 2 \pi \nu t} \int d^{2} \hat{\boldsymbol{c}} e^{i 2 \pi \nu \hat{c} \cdot \boldsymbol{x}} \tilde{E}_{a}[\hat{\boldsymbol{c}}, \nu]$
in a small frequency bin:

$\left\langle\begin{array}{c}\tilde{E}_{X} \tilde{E}_{X}^{*} \tilde{E}_{X} \tilde{E}_{Z}^{*} \\ \tilde{E}_{Z} \tilde{E}_{X}^{*} \tilde{E}_{z} \tilde{E}_{Z}^{*}\end{array}\right\rangle \propto\left(\begin{array}{cc}I+Q & U+i V \\ U-i V & I-Q\end{array}\right)$
Light are a collection of electromagnetic waves.

- I intensity
- Q, U linear polarization
- V circular polarization

By definition: I, Q, U, V real
Schwartz Inequality: $I^{2} \geq Q^{2}+U^{2}+V^{2}$ Elliptically Polarized: $I^{2}=Q^{2}+U^{2}+V^{2}$
Linearly Polarized: $I^{2}=Q^{2}+U^{2} \quad V=0$
Circularly Polarized: $I=|V| \quad Q=U=0$
Unpolarized: $Q=U=V=0$

- There could in principle be a lot of information in all the detailed correlations of the EM field.
- The interesting information is usually only in the time averaged 2nd moments of the E fields.

Expectation:
CMBR slightly linearly polarized

$$
I^{2}>Q^{2}+U^{2} \gg V^{2}
$$

How to Describe the CMBR? Macroscopic Description

On cosmological length and times-scales (millions to billions of light-years):

$$
I[\hat{\boldsymbol{c}}, v, \boldsymbol{x}, t], Q[\hat{c}, v, \boldsymbol{x}, t], U[\hat{\boldsymbol{c}}, v, \boldsymbol{x}, t], V[\hat{\boldsymbol{c}}, v, \boldsymbol{x}, t]
$$

- as we shall see $\mathrm{V}=0$ is a good approximation.
- Spatial Fourier transform, e.g.

$$
I[\hat{\boldsymbol{c}}, \nu, \boldsymbol{x}, t]=\sum_{k} e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{I}[\hat{\boldsymbol{c}}, v, \boldsymbol{k}, t]
$$

- Angular decomposition: spherical harmonics

$$
\tilde{I}[\hat{\boldsymbol{c}}, v, \boldsymbol{k}, t]=\sum_{\ell} \sum_{m} Y_{(\ell, h)}[\hat{c}] \tilde{I}_{(\ell, h)}[v, \boldsymbol{k}, t]
$$

- For each k, align "North Pole" of $Y(, h)$ to k direction then h gives helicity - as we shall see $I_{(l, h)}=0$ for $|h|>2$ is a good approximation.
- A simple $Y(1, h)$ decomposition of Q, U is not the best!

Graphical Representation of Linear Polarization
 2d Symmetric Traceless Tensors

Linear Polarization Patterns

Q patterns

U patterns

Linear Polarization Patterns

$0^{\circ}-90^{\circ}$ pattern
scalar pattern gradient pattern E-mode
pseudo-scalar pattern curl pattern

General E- B- Mode Decomposition

- in any 2-D Riemannian manifold one has 2 covariant tensors:
- metric $g_{a b}$ and Levi-Civita symbol $\varepsilon_{a b}=\sqrt{\operatorname{Det}\left[g_{a b}\right]\{\{0,1\},\{-1,0\}\}}$
- contracting a vector with $\varepsilon_{a b}$ rotates by 90°
- contracting a tensor with $\varepsilon_{a b}$ rotates eigenvectors 45°
- starting with any (scalar) function f
- construct corresponding E- and B- mode vectors
- E-mode: covariant derivative: $f_{; a}$ B-mode: rotate by $90^{\circ}: f_{; b} \varepsilon^{b}{ }_{a}$
- construct corresponding E- and B- mode traceless symmetric tensors
- E-mode: 2nd derivative - trace: $f_{; a b-1 / 2\left(\nabla^{2} f\right)} \delta_{a b}$
- B-mode: symmetrically rotate by $45^{\circ}: 1 / 2\left(f_{; a c} \varepsilon^{c} b+f_{; b c} \varepsilon^{c}{ }_{a}\right)$
- One can construct E-mode and B-mode tensors of any rank this way!

E- B-Mode Spherical Harmonics

- E- B- mode decomposition applied to complete scalar basis gives complete tensor basis!
- on (direction) 2-sphere use spherical harmonic basis: $\mathrm{Y}_{(1, \mathrm{~m})}$
- gives E- B- mode basis for symmetric traceless tensors on sphere
- these can be used to describe linear polarization:

$$
P_{a b}=\left(\begin{array}{cc}
I+Q & U+i V \\
U-i V & I-Q
\end{array}\right)
$$

$$
=\sum_{k} e^{i k \cdot x} \sum_{\ell} \sum_{h}\left(\begin{array}{cc}
\mathrm{I}_{(\ell, h)} & +\mathrm{i} \mathrm{~V}_{(\ell, h)} \\
-\mathrm{i} \mathrm{~V}_{(\ell, h)} & \mathrm{I}_{(\ell, h)}
\end{array}\right) \mathrm{Y}_{(\ell, h)}+\mathrm{E}_{(\ell, h)} Y^{\mathrm{E}}(\ell, h)+\mathrm{B}_{(\ell, h)} Y^{B}(\ell, h)
$$

- Equivalent formulation uses spin-weighted spherical harmonic functions $Y(s, l, m)$

$$
\text { - } Q+i U=\Sigma_{k} e^{i k \cdot x} \quad \Sigma_{\ell} \Sigma_{h} Y(2, \ell, h)
$$

$$
\begin{aligned}
& \text { - } Y^{E}\left((I, m) a b \propto Y_{(l, m) ; a b}-1 / 2\left(\nabla^{2} Y_{(l, m)}\right) \delta_{a b} \quad Y^{B}(I, m) a b \not{ }^{1 / 2}\left(Y_{((I, m) ; a c} \varepsilon_{b}^{c}+Y_{(I, m) ; b c} \varepsilon^{c} a\right)\right. \\
& \text { - } Y^{E}(0, \mathrm{~m}) a b=Y^{\mathrm{B}}(0, \mathrm{~m}) \mathrm{ab}=Y^{\mathrm{E}}(1, \mathrm{~m}) \mathrm{ab}=\mathrm{Y}^{\mathrm{B}}(1, \mathrm{~m}) \mathrm{ab}=0
\end{aligned}
$$

How to Describe the CMBR? Intensity and Units

In astronomy $I[\hat{c}, v, x, t]$ usually has units: ergs $/ \mathrm{cm}^{2} / \mathrm{sec} / \mathrm{steradian} / \mathrm{Hz}$

- recall Poynting energy flux $S=E \times B /(8 \pi)=|E|^{2} /(8 \pi)$ (Gaussian CGS units)
- radio astronomy: often convenient to define a Rayleigh Jeans Brightness temperature

$$
k T_{R J}=1 / 2(c / v)^{2} I
$$

- this gives the thermodynamic temperature if $h v \ll k T$,
- theoretically it is most convenient to use the quantum mechanical occupation number

$$
n^{\top}[v]=1 / 2(c / v)^{2} I /(h v)=k T_{R J} /(h v)
$$

- for a blackbody $n=n_{B E}[V, T]=1 /\left(e^{(h \nu) /(k T)}-1\right)$ N.B.
- one can multiply E, B, V by $1 / 2(c / V)^{2} /(h v)$ to put them in dimensionless occupation number units: $n^{\top}, n^{E}, n^{B}, n^{\vee}$

Spectral Decomposition

One may also decompose the spectrum of each component $X=I, E, B, V$:

- $n^{x}(\ell, h)[v, k, t]=\Sigma_{p}(-1)^{p} / p!n^{x}(\ell, h, p)[k, t] \quad \partial P_{n B B}[v, T] / \partial(\ln v)^{p}$
- this is a (generalized) Fokker Planck expansion about a blackbody.
- $p=0$ corresponds to a pure blackbody - only $n^{\top}(0,0,0)=1 \neq 0$
- $p=1$ is spectral deviation from temperature shift
- Doppler, gravitational redshifts, etc.
- all 1st order anisotropies and polarizations will have this form
- $p=2$ arises from a mixture temperatures shifts
- it only arises to 2nd order in perturbations theory (small)
- Thermal Sunyaev-Zel'dovich (SZ) effect:
- hot plasma $\left(v_{e, r m s}=\left(m_{p} / m_{e}\right)^{1 / 2}{\underset{13}{ }}_{v_{p, r m s}}=0.1 \mathrm{c}\right)$ thermal

How to Describe the CMBR?

Summary

- Mode decomposed each Stokes parameter w/ "quantum numbers"
- K spatial dependence
- h helicity: $=0$ scalar, $=1$ vector, $=2$ tensor
- ℓ angular wavenumber
- p spectral mode

Statistical Description of CMBR

- Assume CMBR can be described as a realization of statistical distribution
- Assume statistical homogeneity and isotropy
- These assumptions severely restricts form of 2-point statistics
- translation symmetry requires different k modes uncorrelated
- rotational symmetry requires different h modes uncorrelated

$$
\left\langle n^{x}(l,, h, p)[k, t] n^{\curlyvee}\left(l^{\prime}, h^{\prime}, p^{\prime}\right)\left[k^{\prime}, t^{\prime}\right]^{*}\right\rangle=C^{x Y}\left(l, l^{\prime} ; h, p, p p^{\prime}\right)\left[|k| ; t, t^{\prime}\right] \delta_{k, k^{\prime}} \delta_{h, h^{\prime}}
$$

Statistical Description of Observed CMBR

- We only get to measure CMBR from one vantage point at one time $\left(\begin{array}{cc}I+Q & U+i V \\ U-i V & I-Q\end{array}\right)=1 / 2(c / v)^{2} /(h v) \Sigma_{p}(-1)^{\mathrm{p}} / \mathrm{P}!\quad \partial \mathrm{P}_{\mathrm{B}}[\mathrm{V}, \mathrm{T}] / \partial(\operatorname{lnv})^{\mathrm{p}} \sum_{\ell} \Sigma_{\mathrm{m}}$

$$
\left(\left(\begin{array}{ll}
n^{\top}(\ell, m, p) & +i n^{\mathrm{V}}(\ell, \mathrm{mp}) \\
-i n^{\mathrm{V}}(\ell, \mathrm{mp})
\end{array}\right) n^{\top}(\ell, \mathrm{m}, \mathrm{p}) \quad Y_{(\ell, \mathrm{m})}+n^{\mathrm{E}}(\ell, \mathrm{~m}, \mathrm{p}) Y^{\mathrm{E}}(\ell, \mathrm{~m})+n^{\mathrm{B}}(\ell,, \mathrm{p}) Y^{\mathrm{B}}(\ell, \mathrm{~m})\right)
$$

- where $n^{x}\left(\ell, m_{p}\right)=\Sigma_{k} \Sigma_{h} D^{\ell}{ }_{m h}[k] n^{x}\left(\ell, h_{p}\right)[k, t]$
- since the K's are isotropically distributed our sky is isotropic:
- $\int d^{2} \hat{c} D^{\ell} \mathrm{m}_{h}[\hat{c}] D^{\ell_{m}^{\prime} h}[\hat{c}]=4 \pi \delta \ell, \ell^{\prime} \delta_{\mathrm{m}, \mathrm{m}^{\prime}}$

$$
\text { - }\left\langle n^{\mathrm{x}}(\ell, \mathrm{~m}, \mathrm{p}) \mathrm{n}^{\mathrm{Y}}\left(\ell^{\prime}, \mathrm{m}^{\prime}, \mathrm{p}^{\prime}\right)^{*}\right\rangle=C^{\mathrm{XY}}\left(\ell, \mathrm{p}, \mathrm{p}^{\prime}\right) \delta \ell_{, \ell^{\prime}} \delta_{\mathrm{m}, \mathrm{~m}^{\prime}}
$$

- where $C^{X Y}\left(\ell\right.$ p.p. $\left.{ }^{\prime}\right)=\Sigma_{k} \Sigma_{h} C^{X Y}\left(\ell, \ell^{\prime} / h ; p, p^{\prime}\right)\left[|k| ; t_{0}, t_{0}\right]$

Statistical Description of Observed CMBR

- To first order we only observe $p=1: C^{x y} \ell=C^{X Y}(\ell, 1,1)$
- Circular polarization damped
- possible modes:
- parity even: $\mathrm{C}^{T \mathrm{~T}} \ell, \mathrm{C}^{\mathrm{EE}} \ell, \mathrm{C}^{8 B} \ell, \mathrm{C}^{T E} \ell$
- parity odd: $\mathrm{C}^{\mathrm{TB}} \ell, \mathrm{C}^{E \mathrm{~B}} \ell$

Boltzmann Equation

- Dynamics determined by free-streaming and scattering
- $D_{t} n^{x}=C^{x}$

- only Thompson (non-relativistic Compton) scattering is important!
- absorption and emission unimportant
- $d \sigma\left[\hat{c}, \hat{c}^{\prime} ; v, v^{\prime}\right] /\left(d^{2} \hat{c}^{\prime} d v^{\prime}\right)=3 / 16 \pi \sigma_{T}\left(1+\hat{c} \cdot \hat{c}^{\prime}\right) \delta\left[v-v^{\prime}\right]$
- $S^{x}[\hat{c}, v, x, t]=3 / 16 \pi c \sigma_{T} n_{e}[x, t] \Sigma_{y} \int d^{2} \hat{c}^{\prime}\left(1+\hat{c} \cdot \hat{c}^{\prime}\right) n^{Y}\left[\hat{c}^{\prime}, v, x, t\right]$
- lensing term $\left(\partial_{+} \hat{\epsilon}\right) \cdot \nabla_{\mathrm{En}} \times[\hat{c}, v, x, t]$ is $2 n d$ order
(2) $\partial_{+} \ln V=-\hat{c} \cdot \nabla \Phi+\partial_{+} \Phi+\hat{c} \cdot \partial_{+} H^{+t+} \cdot \hat{c}$ independent of v

Boltzmann Equation

$\dot{\tilde{a}}_{(l, m)}^{\oplus}+i k\left(f_{(l+1, m)}^{\mathrm{p}} \tilde{a}_{(i+1, m)}^{\oplus}+f_{(l, m)}^{\mathrm{p}} \tilde{a}_{(l-1, m)}^{\oplus}+i f_{(l, m)}^{\oplus} \otimes \tilde{a}_{(l, m)}^{\otimes}\right)=-\dot{\tau}\left(\left(1-\frac{3}{5} \delta_{l 2}\right) \tilde{a}_{(l, m)}^{\oplus}+\frac{2 \sqrt{3}}{5} \delta_{l 2} \tilde{a}_{(2, m)}^{\mathrm{T}}\right)$
$\dot{\tilde{a}}_{(l, m)}^{\otimes}+i k\left(f_{(l+1, m)}^{\mathrm{P}} \tilde{a}_{(l+1, m)}^{\otimes}+f_{(l, m)}^{\mathrm{p}} \tilde{a}_{(l-1, m)}^{\otimes}-\dot{i} f_{(l, m)}^{\oplus} \otimes \tilde{a}_{(l, m)}^{\oplus}\right)=-\dot{\tau} \tilde{a}_{(l, m)}^{\otimes}$

$$
\begin{aligned}
& f_{(t, m)}^{(t)}=\sqrt{\frac{l^{2}-m^{2}}{42^{2}-1}} \\
& f_{U(, m)}^{p}=\sqrt{\frac{\left(l^{\left(2-m^{2}\right)}{ }^{\left(l^{2}-4\right)}\right.}{l^{2}\left(11^{2}-1\right)}} \\
& i f_{(l, m)}^{\oplus \otimes}=\frac{2 i m}{l(l+1)} \\
& \partial_{+} T=c \quad \sigma_{T} n_{e}
\end{aligned}
$$

Thomson Scattering

Thomson Scattering

Thomson Scattering

Thomson Scattering

Linear Polarization Patterns

$0^{\circ}-90^{\circ}$ pattern
$\pm 45^{\circ}$ pattern

Baryon Density

Dark Matter Density

Curvature \& Cosmological Constant

Reionization Optical Depth Tensor Modes

http://background.uchicago.edu/~ Whu/animbut/anim4.html

Results: Temperature

Results: Polarization

Results: Parameters

Parameter Degeneracy

Results: Other Parameters

Constraints on Inflation

CONCLUSIONS

- THE CMBR IS A FAIRLY SIMPLE AND CLEAN AND EASY TO TO UNDERSTAND SYSTEM ALLOWING VERY PRECISE MEASUREMENTS OF ITS PROPERTIES
- BECAUSE OF THIS THE CMBR HAS AND WILL CONTINUE TO PROVIDE SOME OF THE BEST CONSTRAINTS ON COSMOLOGICAL PARAMETERS

