Cornering electroweakinos at the LHC

Stefania Gori

Perimeter Institute

Susy at the near energy frontier workshop Fermilab, November 11th 2013

Light Electroweakinos

Naturalness wants <u>Higgsino</u> to be <u>light</u>.

since the μ parameter enters the Higgs potential at tree level

- Natural for gauginos to be lighter than sfermions Split Susy, AMSB
- Light gauginos alone can preserve gauge unification

	Squarks ———	
EWKino masses get <u>less renormalized</u> than		
the gluino mass.	Gluino ———	
	Higgsino	
LHC: much weaker bound for ewinos than for QCD charged particles	Wino Bino	_} △

Compressed spectra

Some motivations for compression

Well tempered neutralino: Arkani-Hamed, Delgado, Giudice 0601041 Efficient annihilation in significant mass splitting

Cheung, Hall, Pinner, Ruderman, 1211.4873 current limits 1000 LEP $\chi^+\chi^-$ XENON100 SI Fermi 500 $\Omega_{\nu}^{(\text{th})} = \Omega_{\text{obs}}$ $\tan \beta = 2$ M_1 [GeV] $\mu = 750 \text{ GeV}$ -500 $m_{\chi^{\pm}} < m_{\chi^0}$ $c_{h\chi\chi} = 0$ -1000-500500 1000 0 -1000 M_2 [GeV]

Squeezed spectra can also be "Blind spots" for DM direct searches

Difficulties: Electroweakino direct production cross sections are small Soft visible particles and no sizable MET

Compressed spectra

Some motivations for compression

Well tempered neutralino: Efficient annihilation is no significant mass splitting

Arkani-Hamed, Delgado, Giudice 0601041

Use of a ISR jet

Very squeezed.

Nothing else to see. Mono-jet type signals.

Giudice, Han, Wang, Wang, 1004.4902

Pretty squeezed.

"traditional" method possible, but suffers from low efficiency.

ISR jet + soft leptons + some MET signature

More challenging signal, could be the reason that we have not discovered them yet?

Use of a ISR jet

Very squeezed.

Nothing else to see. Mono-jet type signals.

Pretty squeezed.

Giudice, Han, Wang, Wang, 1004.4902

"traditional" method possible, but suffers from low efficiency.

ISR jet + soft leptons + some MET signature

More challenging signal, could be the reason that we have not discovered them yet?

3I+MET+ISR jet

For this talk:

 Main background: W Z/γ
 Subleading backgrounds: ZZ, Tri-boson, fake backgrounds
 Based on S.G., S.Jung, L-T.Wang, 1307.5952

S.Gori

Lepton invariant masses

 Experimental collaborations use mSFOS(Z), however, the minimum of all possible SFOS invariant masses <u>min(mSFOS)</u> has a <u>clearer edge</u>

Lower and upper bounds on the values of mSFOS

ISR and correlation variables

$$-ec{E}_T^{ ext{miss}} = ec{p}_T(j_1) + \sum ec{p}_T(\ell), \qquad |ec{p}_T(\ell)| \sim \gamma E_\ell^0$$

 Sizable MET in the signal arises only from a hard ISR (the two LSPs are not anymore back to back)

Correlations are more and more pronounced going to more and more squeezed spectra

 $egin{aligned} & (E^0_\ell)_{
m sig} ~\sim~ \Delta, \ & \Delta \equiv m_{\chi_2} - m_{
m LSP} ~\ll~ m_{\chi_2} \ & (E^0_\ell)_{
m bkgd} \sim m_{W,Z}/2 \end{aligned}$

ISR and correlation variables

<u>Weaker correlation</u> between the pT of the leptons and the pT of the ISR jet

Stronger correlation going to harder ISR jets

It can be a more useful variable at the 14 TeV LHC with high luminosity

Example of optimization of the cuts

(150 - 120)	cuts	\boldsymbol{S}	$\frac{S}{B}$	$\frac{S}{\sqrt{B}}$	$rac{S}{\sqrt{B+(0.15\cdot B)^2}}$
Tight- p_T baseline	$p_T(\ell) > 10 { m GeV}, p_T(j) > 30 { m GeV},$	18	0.17	1.8	0.97
	$\min(\text{mSFOS}) > 18 \text{ GeV},$				
	mSFOS(Z) < 81 GeV				
	$\min(\mathrm{mSFOS}) < \Delta{=}30~\mathrm{GeV}$	17	0.47	2.8	2.1
Tight - p_T	$\Delta \phi(j_1, \mathrm{E}_\mathrm{T}^\mathrm{miss}) > 2.4$	14	0.91	3.5	3.1
cuts	$\mathrm{E_T^{miss}}/p_T(j_1) > 0.64$	12	1.4	4.1	3.7
	${f E}_{ m T}^{ m miss} > 20{ m GeV}, p_T(\ell_1) < 50{ m GeV} \ p_T(\ell_1)/p_T(j_1) < 1.21$	11	1.7	4.3	4.0
ATLAS-CONF-2013-035	SRnoZa	17	0.32	2.3	1.6

Note: imposing $E_T^{miss} > 50 \, GeV$ would change the significance by only ~10%

<u>SRnoZa</u>

 $\mathrm{mSFOS} < 60 \,\mathrm{GeV}, \,\mathrm{min(mSFOS)} > 12 \,\mathrm{GeV}, \,\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} > 50 \,\mathrm{GeV}$ and either $\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} < 75 \,\mathrm{GeV}$ or $m_T(W) < 110 \,\mathrm{GeV}$ or $p_T(\ell_3) < 30 \,\mathrm{GeV}$

Potential improvements

and branching ratios = 1 Main issue in this region (see next talk by Tao Han) is the requirement min(mSFOS)>12GeV 400 140 Tight p_T cuts Tight pr cuts 1.5 350 120 m_{LSP}(GeV) m_{LSP}(GeV) 300 100 250 80 200 LHC8 21 LHC8 21/fb 150∟ 200 60 140 160 180 100 120 250 300 350 400 $m_{\chi}(\text{GeV})$ $m_{\chi}(\text{GeV})$ $\chi_1^\pm ~
ightarrow ~W^{(*)}\chi_1^0
ightarrow \ell
u\chi_1^0,$ $\chi_1^{\pm} \rightarrow \tilde{\ell}
u, \, ilde{
u} \ell \rightarrow \ell
u \chi_1^0,$ $\chi^0_2 ~
ightarrow ~ ilde\ell\ell \chi^0_1$ $\chi^0_2 ~
ightarrow~ Z^{(*)}\chi^0_1
ightarrow \ell\ell\chi^0_1$ (light sleptons in the spectrum) $m_{ ilde{\ell}} = (m_{\chi_2} + m_{
m LSP})/2$ Improvement on $S/\sqrt{B+(0.15\cdot B)^2}$ in comparison with SRnoZa

Assuming wino-like NLSP

Prospects for the 14TeV LHC

With 300 fb⁻¹ data

300 - 280	cuts	old S	$\frac{S}{B}$	$\frac{S}{\sqrt{B}}$	$rac{S}{\sqrt{B+(0.15\cdot B)^2}}$
Loose- p_T baseline	$p_T(\ell) > 7 \mathrm{GeV}, p_T(j) > 30 \mathrm{GeV},$	56	0.018	1.0	0.12
	$\min(\text{mSFOS}) > 12 \text{GeV},$				
	$\mathrm{mSFOS}(\mathrm{Z}) < 81\mathrm{GeV}$				
	$\min(\mathrm{mSFOS}) < \Delta = 20 \mathrm{GeV}$	50	0.049	1.6	0.32
Loose- p_T	${ m E}_{ m T}^{ m miss} > 60{ m GeV}p_T(\ell_1) < 50{ m GeV}$	32	0.21	2.6	0.78
$(14) \mathrm{~cuts}$	$p_T(\ell_1)/p_T(j_1) < 0.2$	17	0.64	3.3	2.59
	$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}/p_{T}(j_{1})>0.9$.	13	1.2	3.9	3.44

Heavy sleptons

Conclusions and outlook

- Squeezed and light electroweak spectra are an interesting theoretical possibility
- Experimental searches are known to be more difficult

To exploit the presence of a relatively boosted ISR jet

Possible improvements for the 3leptons+MET+ISR jet signature

- Weaker lower bound on min(mSFOS)
- Some work for experimentalists Lower thresholds for leptons. Requiring 1-2 muons might help

Complementary signatures:

- SS leptons+MET+ISR jet (ask Graham!)
- Mono-jet

ATLAS 31 search

ATLAS-CONF-2013-035

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
Tri-boson	1.7 ± 1.7	0.6 ± 0.6	0.8 ± 0.8	0.5 ± 0.5	0.4 ± 0.4	0.29 ± 0.29
ZZ	14 ± 8	1.8 ± 1.0	0.25 ± 0.17	8.9 ± 1.8	1.0 ± 0.4	0.39 ± 0.28
$t\bar{t}V$	0.23 ± 0.23	0.21 ± 0.19	$0.21^{+0.30}_{-0.21}$	0.4 ± 0.4	0.22 ± 0.21	0.10 ± 0.10
WZ	50 ± 9	20 ± 4	2.1 ± 1.6	235 ± 35	19 ± 5	5.0 ± 1.4
Σ SM irreducible	65 ± 12	22 ± 4	3.4 ± 1.8	245 ± 35	20 ± 5	5.8 ± 1.4
SM reducible	31 ± 14	7 ± 5	1.0 ± 0.4	4^{+5}_{-4}	1.7 ± 0.7	0.5 ± 0.4
Σ SM	96 ± 19	29 ± 6	$\textbf{4.4} \pm \textbf{1.8}$	249 ± 35	22 ± 5	$\textbf{6.3} \pm \textbf{1.5}$
Data	101	32	5	273	23	6
p_0 -value	0.41	0.37	0.40	0.23	0.44	0.5
N _{signal} excluded (exp)	39.3	16.3	6.2	67.9	13.2	6.7
N_{signal} excluded (obs)	41.8	18.0	6.8	83.7	13.9	6.5
$\sigma_{\mathrm{visible}}$ excluded (exp) [fb]	1.90	0.79	0.30	3.28	0.64	0.32
$\sigma_{\mathrm{visible}}$ excluded (obs) [fb]	2.02	0.87	0.33	4.04	0.67	0.31

<u>SRnoZa</u>

 $\rm mSFOS < 60\,GeV,\,min(mSFOS) > 12\,GeV,\,E_T^{miss} > 50\,GeV$ and

either $\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} < 75 \,\mathrm{GeV}$ or $m_T(W) < 110 \,\mathrm{GeV}$ or $p_T(\ell_3) < 30 \,\mathrm{GeV}$