

Inclusive gluinos and squarks searches at ATLAS

Duong Nguyen on behalf of the ATLAS collaboration

Argonne National Laboratory

LPC Near Future SUSY Search Fermilab, November 11-13, 2013

Introduction

- Motivation of SUSY
 - Higgs mass stabilization (hierarchy problem)
 - Unify of gauge couplings
 - Dark matter candidate
- Strong gluino and squark production is attractive due to high cross section

Around 4.8 fb⁻¹ (7 TeV) and 20 fb⁻¹ (8 TeV) have been analyzed

ATLAS SUSY Searches* - 95% CL Lower Limits								ATL	4S Preliminary	
Si	tatus: SUSY 2013							$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	\sqrt{s} = 7, 8 TeV	
	Model	e, μ, τ, γ	⁄ Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	⁻¹]	Mass limit	-	Reference	
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\bar{q}, \tilde{q} \rightarrow \tilde{q}\tilde{i}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{i}_{1}^{1} \rightarrow qqW^{\pm}\tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{k}_{1}^{1} \rightarrow qqW^{\pm}\tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\mathcal{U}/\ell_{V}/w)\tilde{y}_{1}^{1} \\ GMSB (\tilde{\ell} \ NLSP) \\ GMSB (\tilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higgsino \ bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GFavitino \ LSP \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 0-3 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ă, ğ j j	1.7 TeV 1.2 TeV 1.1 TeV 1.1 TeV 740 GeV 1.3 TeV 1.18 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.24 TeV 1.24 TeV 1.4 TeV 619 GeV 900 GeV 690 GeV 645 GeV	$\begin{split} \mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}) \\ & \mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}) \\ & \mathbf{any} \ \mathbf{m}(\tilde{q}) \\ & \mathbf{any} \ \mathbf{m}(\tilde{q}) \\ & = 0 \ \mathbf{GeV} \\ & \mathbf{m}(\tilde{\chi}_1^0) = \mathbf{O} \ \mathbf{GeV} \\ & \mathbf{tan}(\tilde{g}) = 15 \\ & \mathbf{tan}(\tilde{g}) = 10 \\ & \mathbf{tan}(\tilde{g}) = 1$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-062 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147	Covered in this talk

Outline:

- Search Strategy
- Olepton+2-6 jets
- Olepton + multijets
- Search with leptons
 - 1 hard lepton + jets + MET
 - 1 soft lepton + jets + MET
 - 2 same sign leptons + jets + MET
- Search for R-hadron
- Interpretation of search results

Search Strategy

- Define model-dependent signal regions:
 - Number of jets from 2 to 10, with or without leptons (no taus) and MET.

DATA / MI

500

1000

1500

2000

2500

3000

- Jets can be identified as "fat" jet in some cases
- Model-dependent optimization for the best reach
- Perform a likelihood fit combining signal regions and corresponding control regions to find excess or to exclude the model parameter space.
- Main variables used to distinguish signal from backgrounds
 - Missing transverse energy
 - **Transverse** mass

DATA

3500

4000 m_{eff}(incl.) [GeV]

O-lepton + 2-6 jets Analysis

- Wide catch of SUSY hadronic decay chains with 2-6 jets and MET
- Signal region definitions

	Sqı	uark-	0	Squark-						
squ		uark	gluino		gluino-gluino					
	Channel									
Requirement	A (2-jets)		B (3-jets)		C (4-jets)		D (5-jets)	E (6-jets))
	L	М	М	Т	М	Т	-	L	М	Т
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160									
$p_{\rm T}(j_1) [{\rm GeV}] >$	130									
$p_{\rm T}(j_2) [{\rm GeV}] >$	60									
$p_{\rm T}(j_3) [{\rm GeV}] >$	j_{3} [GeV] > -			60 60			60	60		
$p_{\rm T}(j_4) [{\rm GeV}] >$	_		-		6	0	60	60		
$p_{\rm T}(j_5) [{\rm GeV}] >$	-		_		-	60	60			
$p_{\rm T}(j_6) [{\rm GeV}] >$	_			_		-	_	60		
$\Delta \phi(\text{jet}_i, \mathbf{E}_{\text{T}}^{\text{miss}})_{\text{min}} > \qquad 0.4 \ (i = \{1, \dots, n\}\}$		= {1, 2, (3	$(3 \text{ if } p_{\mathrm{T}}(j_3) > 40 \text{ GeV})) = 0.4 \ (i = \{1, 2, 3\}), \ 0.2 \ (p_{\mathrm{T}} > 40 \text{ GeV jets})$)			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm ~GeV^{1/2}}$.

 Major backgrounds: W+jets, Z+jets, top quark pairs, single tops, QCD multijets

O-lepton + 2-6 jets: Background Estimation ATLAS-CONF-2013-

 Define 4 CRs for each SR: only one background process is 047 dominant in the CR
 ATLAS Preliminary Ldt = 20.3 fb⁻¹

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow \nu\nu)$ +jets	γ+jets	Isolated photon
CRQ	multi-jets	multi-jets	Reversed $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$) _{min} and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ requirements ^a
CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b$ -veto
CRT	<i>tī</i> and single- <i>t</i>	$t\bar{t} \rightarrow bbqq'\ell\nu$	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

- Roughly speaking, extrapolating the backgrounds from CRs to SR using transfer factors:
 - Transfer factor is the ratio of a background process between CR and SR.
- Do the job smarter: extract the backgrounds using likelihood fit with transfer factors as inputs.

L+jets 12 ± 7 $5M$ Total $V+jets$ 18 ± 7 $5M$ WilijetTbar+single top 76 ± 19 $V+jets$ $Multijet$ 1.0 ± 1.0 Total backgrounds 113 ± 21 Observed events 166	Diboson		5.5 ± 2.3	1	ninary	$\int L dt = 20.3$
V+jets 18 ± 7 Ttbar+single top 76 ± 19 Multijet 1.0 ± 1.0 Total backgrounds 113 ± 21 Observed events 166 2.5 <td< td=""><td>2+jets</td><td></td><td>12 ± 7</td><td></td><td>•</td><td>Data 2012 (SM Total $\tilde{g}\tilde{g}$ m(\tilde{g})=10</td></td<>	2+jets		12 ± 7		•	Data 2012 (SM Total $\tilde{g}\tilde{g}$ m(\tilde{g})=10
Ttbar+single top 76 ± 19 W_{ijets} Multijet 1.0 ± 1.0 Total backgrounds 113 ± 21 Observed events 166 V_{VQ} 2.5 1.5 1.5 1.5 1.5 1.5 1.6	V+jets		18 ± 7			ĝĝ m(ĝ)=12 Multijet Zviete
Multijet 1.0 ± 1.0 Total backgrounds 113 ± 21 Observed events 166	tbar+single top		76 ± 19			V+jets W+jets tt & single t
Total backgrounds 113 ± 21 Dbserved events 166	Aultijet		1.0 ± 1.0	C		Diboson
Dbserved events 166	otal backgrounds		113 ± 21	1		
	Observed events		166		1	
-0 600 1000 1600 0600 0600 000	DATA / MC	2.5 2 1.5 10.5				

Long decay chains: Olepton + 7 to 10 jets + MET

- 19 signal regions are defined:
 - $p_T > 50$ GeV: 8, 9 and 10 or more jets with 0, 1 or at least 2 jets identified as b-jets
 - $p_T > 80$ GeV: 7 and at least 8 jets with 0, 1 or at least 2 jets identified as b-jets
 - $p_T > 50$ GeV and $M_J^{\Sigma} > 340$ or 420 GeV, number of jets are at least 8, 9 or 10
 - The M_J^{Σ} is the scalar sum of "fat" jets reconstructed from clustering narrow jets (0.4 cone) within R=1 cone.

Discriminant variable: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ >4 GeV⁻² is applied for all regions

- Backgrounds:
 - Multijet backgrounds: QCD multijet, hadronic ttbar, W+jets, Z+jets
 - Leptonic backgrounds: leptonic decay of ttbar, W+jets and Z+jets

Olepton + 7 to 10 jets + MET: Background estimation

arXiv: 1308.1841

- Multi-jet background:
 - Use the shape of $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ with low jet multiplicity and normalize the shape using low $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ 4 GeV⁻²
- Leptonic background: normalize MC predictions using CR dominated by background process undergoing estimation

Searches with leptons + jet and MET

- Require 1 or 2 leptons + jet and MET:
 - Targeting leptonic decays of charginos, neutralinos, sleptons, sneutrino either directly or through immediate steps.
 - The lepton can be soft for better sensitive to compress spectrum
- Channel includes:
 - 1 hard lepton + 3-6 jets
 - 1 or 2 soft leptons + 2-5 jets
 - 2 leptons + jets + MET: same sign, razor anlysis
- Major backgrounds:
 - QCD multijets
 - Ttbar, W+jets
 - Other backgrounds from diboson, single top, ttbar + V

200 GeV Data (2012) Data (2012) ATLAS Preliminary Ldt = 20.3 fb⁻¹, s=8 TeV W+jets misid. lepto vents Single top Diboson Signal definition States gluino(1145,785,425) GeV

tt⊥V Z+jets ATLAS-CONF-2013-062

2leptons + jets + MET

 Razor variable utilize the symmetry of SUSY decay chain when s-particles produced in pairs

$$M_{R}^{\prime} = \sqrt{(j_{1,E} + j_{2,E})^{2} - (j_{1,L} + j_{2,L})^{2}},$$

$$R = \frac{M_{T}^{R}}{M_{R}^{\prime}}.$$

$$M_{T}^{R} = \sqrt{\frac{|\vec{E}_{T}^{\text{miss}}|(|\vec{j}_{1,T}| + |\vec{j}_{2,T}|) - \vec{E}_{T}^{\text{miss}} \cdot (\vec{j}_{1,T} + \vec{j}_{2,T})}{2}}$$

- R is low for SM backgrounds
- Signal definition

						- 04E Lve
	b-jets	Z-veto	N _{Jets}	Jet p_{T}	R Range	0.3
Signal Regions						0.2
<i>ее/µµ</i> SR 1	No	Yes	≤ 2	> 50	<i>R</i> >0.5	
<i>eµ</i> SR 1	No	No	≤ 2	> 50	<i>R</i> >0.5	0 200
<i>ее/µµ</i> SR 2	No	Yes	≥ 3	> 50	<i>R</i> >0.35	000 \ 11 . R
<i>е</i> µ SR 2	No	No	≥ 3	> 50	<i>R</i> >0.35	$800 < M_R'$
Discovery Regions						
ee/μμ DR	No	Yes	≤ 2	> 50	<i>R</i> >0.5	$600 < M'_R$
<i>e</i> μ DR	No	No	≤ 2	> 50	<i>R</i> >0.5	$600 < M'_R$

2 leptons + jets + MET

Razor distribution after final selection

2 same-sign lepton

ATLAS-CONF-2013-007

 charge misidentification: use charge flip probability identified from Drell-Yan process

R-hadron search

- Gluino, squark are hadronized into hadron: $\tilde{g}q\bar{q}$ $\tilde{g}qqq$ $\tilde{g}g$ $\tilde{t}\bar{q}$.
- Some R-hadrons loose their momentum, stop in the calorimeter and decay to neutralino and jets at later time -> candidate events selected empty bunch crossing
- Selection: at least one high energy je and no muon segments in the muon system
 - Jet: |η| < 1.2, pT > 50 GeV, up to five jets are allowed
 - No muon segment with more than 4 hits
 - Two signal region with leading jet pT > 100 and 300 GeV
- Backgrounds: beam halos and cosmic rays

mSUGRA/cMSSM

Summary

- No sign of SUSY found in inclusive search with jets and missing transverse energy
- Efficient search techniques have been developed which can be recycled for new runs
- Stringent limits on gluino, squarks, lightest neutralino masses
 - Gluino and squark mass > 1 TeV
- 14 TeV runs promise exciting new results