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Which Supersymmetric Model?

CMSSM

mSUGRA

NUHM

(mini) Split SUSY

MSSM with R-Parity (still more than 100 parameters)
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The CMSSM

Parameters: m1/2, m0, A0, tan β, sgn(μ)       {m3/2}
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m1/2 - m0 planes

CMSSM Ellis, Olive, Santoso, Spanos
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The Higgs mass in the CMSSM
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mSUGRA models

	
 G = ϕ ϕ∗ + z z∗ + ln |W|2;   W = f(z) + g(ϕ)
Scalar Potential (N=1):   

€ 

V = e(|z|
2 +|ϕ | 2 ) ∂f

∂z
+ z* f (z) + g(ϕ)( )

2⎡ 

⎣ 
⎢ 

€ 

+
∂g
∂ϕ

+ϕ* f (z) + g(ϕ)( )
2

− 3 f (z) + g(ϕ) 2
⎤ 

⎦ 
⎥ 
⎥ 

e.g. Barbieri, Ferrara, Savoy

In the low energy limit (MP → ∞),
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Abstract. While the constrained minimal supersymmetric standard model (CMSSM) with universal gaug-
ino masses, m1/2, scalar masses, m0, and A-terms, A0, defined at some high energy scale (usually taken
to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the
constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a
relation between the trilinear and bilinear soft supersymmetry breaking terms, B0 = A0 −m0, nor does it
impose the relation between the soft scalar masses and the gravitino mass, m0 = m3/2. As a consequence,
tan β is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero
(GM) extension to mSUGRA, one can introduce new parameters to the Kähler potential which are asso-
ciated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending
on the value of A0, one may have a gravitino or a neutralino dark matter candidate. We also consider the
consequences of imposing the universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.

UMN–TH–3103/12, FTPI–MINN–12/17, LPT–Orsay-12-49

1 Introduction

One of the most commonly studied variants of the min-
imal supersymmetric standard model is the constrained
model (CMSSM) [1, 2]. This is in part due to its simplic-
ity (it is specified by four parameters), and its connection
to supergravity [3, 4]. The CMSSM also provides a nat-
ural dark matter candidate [5], the neutralino, for which
the relic density may be brought into the range specified
by WMAP [6] relatively easily. Furthermore, these models
generally predict a relatively light mass for the Higgs bo-
son (mh ! 130 GeV) [7]. Not only is the theory testable,
but is currently under scrutiny from the ongoing experi-
ments at the LHC [8], resulting in strong constraints on
the CMSSM parameter space, particularly when recent
constraints from Higgs searches [10] are applied [11].

The CMSSM is defined by choosing universal soft su-
persymmetry breaking parameters input at the grand uni-
fied (GUT) scale, i.e., the scale at which gauge coupling
unification occurs. These are the universal gaugino mass,
m1/2, scalar mass,m0, and trilinear term, A0. The motiva-
tion of this universality stems from minimal supergravity
(mSUGRA) and indeed the two theories are often con-
fused.

Minimal supergravity is defined by a Kähler potential
with minimal kinetic terms (in Planck units),

G = K(φi,φi
∗, zα, z∗α) + ln(|W |2) , (1)

with
K = K0 = φiφi

∗ + zαz∗α , (2)

where W = f(zα) + g(φi) is the superpotential, assumed
to be separable in hidden sector fields, zα, and standard
model fields, φi. The scalar potential can be derived once
the superpotential is specified. Assuming that the origin
of supersymmetry breaking lies in the hidden sector, the
low energy potential is derived from

V = eK
(
KIJ̄DIWD̄J̄W̄ − 3|W |2

)

= eG
(
GIG

IJ̄GJ̄ − 3
)
, (3)

with DIW ≡ ∂IW +KIW and dropping terms inversely
proportional to the Planck mass, we can write [4]

V =

∣∣∣∣
∂g

∂φi
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2

+
(
A0g

(3) +B0g
(2) + h.c.

)
+m2

3/2φ
iφ∗i ,(4)

where g(3) is the part of the superpotential cubic in fields,
and g(2) is the part of the superpotential quadratic inMonday, November 11, 13



  

For example,
Polonyi: f(z) = m0 (z + β) ; 

m0 = m3/2 ;	
 A0 = (3 - √3) m0;	
 B0 = A0 - m0

With <z> = √3 - 1  for β = 2 - √3	
    

where

A0g
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mSUGRA

Parameters: m1/2, m3/2, A0, sgn(μ)     

Electroweak Symmetry Breaking conditions used to solve for tanβ:
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mSUGRA planes

Ellis, Luo, Olive, Sandick
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Δχ2 map of m0 - m1/2 plane

CMSSM
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Elastic scaterring cross-section

CMSSM
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ATLAS Results from run I

~20.7fb-1 @ 8 TeV
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m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos
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m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 ,  µ > 0
mh  = 114 GeV

Atlas 0l 95%CL

mh  95% CL

CMS MHT 95%CL

Atlas 2011 95%CL (PCL)

Atlas 2011 95%CL (CLs)

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

mh  = 114 GeV

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  µ > 0

Monday, November 11, 13



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos
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m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos
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m1/2 - m0 planes incl. LHC
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The Higgs Search
The LHC @ ~20.7/fb
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Limits at ~5 fb-1

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Isidori, Marrouche, Martinez Santos, 
Nakach, Olive, Rogerson, Ronga, de Vries, Weiglein

Δχ2 map of m0 - m1/2 plane
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Comparison of best fit 
points pre and post LHC

p-value of SM = 9% (32.7/23) - but note: does not include dark matter

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Isidori, Marrouche, Martinez Santos, 
Nakach, Olive, Rogerson, Ronga, de Vries, Weiglein

3

Model Data set Minimum Prob- m0 m1/2 A0 tanβ

χ2/d.o.f. ability (GeV) (GeV) (GeV)

CMSSM pre-LHC 21.5/20 37 % 90 360 -400 15

LHC1/fb 31.0/23 12% 1120 1870 1220 46

ATLAS5/fb (low) 32.8/23 8.5% 300 910 1320 16

ATLAS5/fb (high) 33.0/23 8.0% 1070 1890 1020 45

NUHM1 pre-LHC 20.8/18 29 % 110 340 520 13

LHC1/fb 28.9/22 15% 270 920 1730 27

ATLAS5/fb (low) 31.3/22 9.1% 240 970 1860 16

ATLAS5/fb (high) 31.8/22 8.1% 1010 2810 2080 39

Table 2. The best-fit points found in global CMSSM and NUHM1 fits using the ATLAS 5/fb jets + /ET

constraint [?], the combination of the ATLAS [?], CDF [?], CMS [?] and LHCb [?] BR(Bs → µ+µ−) [?]
constraints and the updated values of MW and mt, compared with those found previously in global fits
based on the LHC1/fb data set. In both cases, we include a measurement of Mh = 125 ± 1.0 ± 1.5 GeV
and the new XENON100 constraint [?]. In the case of the CMSSM, we list the parameters of the best-fit
points in both the low- and high-mass ‘islands’ in Fig. ??, and we quote results for a high-mass NUHM1
point as well as the low-mass best-fit point in this model. We note that the overall likelihood function is
quite flat in bot the CMSSM and the NUHM1, so that the precise locations of the best-fit points are not
very significant, and we do not quote uncertainties. For completeness, we note that in the best NUHM1
fit m2

H ≡ m2
Hu

= m2
Hd

= −6.5× 106 GeV2, compared with −5.5× 106 GeV2 previously.
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New Higgs Mass Calculations
2

In the original version of H3m, the transition of mt

from the on-shell to the dr scheme could su↵er from
large logarithms if superpartners masses or renormaliza-
tion scales µ are much larger than mt. Since null re-
sults from the LHC increasingly favor this possibility,
the program has been improved in the following way.
First, we calculate mt(µ) in five-flavor QCD in the ms
scheme using 4-loop running as implemented in the nu-
merical package RunDec [18]. This value is transferred
to the dr scheme via a finite renormalization at 3-loop
order [19, 20]. Finally, the transition from five-flavor
QCD to SUSY-QCD is performed using the 2-loop de-
coupling coe�cient of mt [21, 22]. This procedure is
faster, more robust, and more accurate than the old
code. The new version of H3m is publicly available at
http://www.ttp.kit.edu/Progdata/ttp10/ttp10-23.

Results as a Function of Weak-Scale Parameters. We
now present results for the Higgs boson mass, including
the 3-loop corrections described above, as functions of
weak-scale supersymmetry parameters. We set tan� =
20 so that the tree-level Higgs boson mass is within 1
GeV of its maximal value, and we consider nearly de-
generate, unmixed stops, with m

˜tL = m
˜tR and Xt = 0.

The dependence on other parameters is relatively mild;
we set µ = 200 GeV, assume gaugino mass unification
with mg̃ = 1.5 TeV, and set all other sfermion soft mass
parameters equal to m

˜tL,R
+1 TeV. For multi-TeV values

of the sfermion masses, these models have scalar masses
far heavier than gaugino and Higgsino masses.

The results are shown in Fig. 1. For m
˜t1 in the range

1–10 TeV, 1-loop corrections raise the Higgs mass by 18
to 31 GeV, and 2-loop corrections raise the mass fur-
ther by another 4 to 7 GeV. The experimental value of
mh is apparently obtained for m

˜t1 ⇠ 5 TeV. However,
the 3-loop e↵ects raise the Higgs mass by another 0.5
to 3 GeV. The magnitude of the corrections decreases
with increasing loop order, indicating a well-behaved, if
slowly converging, perturbative expansion, and the size of
the 3-loop corrections is consistent, within uncertainties,
with the NLL analysis of Ref. [23]. Clearly, however, the
3-loop corrections are still sizable, and they reduce the
required top squark mass to 3 to 4 TeV, a reduction with
potentially great significance for supersymmetry discov-
ery, as we discuss below.

Ref. [23] observes partial cancellations between leading
logarithm terms of O(↵t↵2

s) and O(↵2

t↵s) in a particular
scenario. We advocate a full calculation at O(↵2

t↵s) to
investigate whether this behaviour is universal.

In Fig. 1, the width of the bands is determined by
the parametric uncertainty induced by the uncertainty
in the top quark mass and ↵s. It is dominated by the
uncertainty in the top mass. The top mass has been con-
strained by kinematic fits in combined analyses of Teva-
tron [24] and LHC [25] data, and may also be stringently
constrained in the future by cross section measurements
(see, e.g., Ref. [26]). For now, we consider the range
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FIG. 1. The Higgs boson mass mh from H3m at 1-, 2-,
and 3-loops for nearly degenerate (m

˜tL
= m

˜tR
), unmixed

(Xt = 0) top squarks, as a function of the physical mass
m

˜t1
. The renormalization scale is fixed to MS =

p
m

˜t1
m

˜t2
,

we set tan� = 20, µ = 200 GeV, all other sfermion soft
parameters equal to m

˜tL,R
+ 1 TeV, and assume gaugino

mass unification with mg̃ = 1.5 TeV. The bands indicate
the parametric uncertainty from mpole

t = 173.3 ± 1.8 GeV
and ↵s(mZ) = 0.1184 ± 0.0007. The horizontal bar is the
experimentally allowed range mh = 125.6± 0.4 GeV.

mpole

t = 173.3 ± 1.8 GeV. The resulting parametric un-
certainty is 0.5 to 2 GeV; it exceeds the experimental
uncertainty and is comparable to that expected from 4-
and higher-loop e↵ects in the theoretical prediction.

In Fig. 2, we compare our results to those of 2-loop
codes. The 2-loop results di↵er significantly from each
other, with di↵erences of up to 4 GeV for stop masses
in the 1 to 10 TeV range shown. The 3-loop results are
within this range for ⇠ TeV stop masses, as found in
Refs. [5, 6]. However, for multi-TeV stop masses, the
3-loop contributions may significantly enhance mh.

Some of the di↵erences between the 2-loop results can
be explained by di↵erent default choices for the renor-
malization scale. They also di↵er in how the running top
mass is extracted from its pole mass. This di↵erence is
formally of higher order [27]. The di↵erent treatment of
parameters also explains the di↵erence between H3m’s 2-
loop results and FeynHiggs. For example, FeynHiggs
uses 1-loop running for ↵s and mt, which is formally cor-
rect since the 2-loop results are leading order in ↵s.

Results for mSUGRA and Implications for Supersym-
metry at the LHC. To determine the implications of the
3-loop corrections for the LHC, we consider here the well-
known framework of minimal supergravity (mSUGRA),
defined in terms of GUT-scale parameters, for which de-
tailed collider studies have been carried out.

Feng, Kant, Profumo, Sanford

Includes dominant 
O(αt αs2)  corrections

FeynHiggs 2.10.0

to include next-to-leading
logs Log(mt/mt) to all orders~
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FIG. 1. The Higgs boson mass mh from H3m at 1-, 2-,
and 3-loops for nearly degenerate (m

˜tL
= m

˜tR
), unmixed

(Xt = 0) top squarks, as a function of the physical mass
m

˜t1
. The renormalization scale is fixed to MS =

p
m

˜t1
m

˜t2
,

we set tan� = 20, µ = 200 GeV, all other sfermion soft
parameters equal to m

˜tL,R
+ 1 TeV, and assume gaugino

mass unification with mg̃ = 1.5 TeV. The bands indicate
the parametric uncertainty from mpole

t = 173.3 ± 1.8 GeV
and ↵s(mZ) = 0.1184 ± 0.0007. The horizontal bar is the
experimentally allowed range mh = 125.6± 0.4 GeV.

mpole

t = 173.3 ± 1.8 GeV. The resulting parametric un-
certainty is 0.5 to 2 GeV; it exceeds the experimental
uncertainty and is comparable to that expected from 4-
and higher-loop e↵ects in the theoretical prediction.

In Fig. 2, we compare our results to those of 2-loop
codes. The 2-loop results di↵er significantly from each
other, with di↵erences of up to 4 GeV for stop masses
in the 1 to 10 TeV range shown. The 3-loop results are
within this range for ⇠ TeV stop masses, as found in
Refs. [5, 6]. However, for multi-TeV stop masses, the
3-loop contributions may significantly enhance mh.

Some of the di↵erences between the 2-loop results can
be explained by di↵erent default choices for the renor-
malization scale. They also di↵er in how the running top
mass is extracted from its pole mass. This di↵erence is
formally of higher order [27]. The di↵erent treatment of
parameters also explains the di↵erence between H3m’s 2-
loop results and FeynHiggs. For example, FeynHiggs
uses 1-loop running for ↵s and mt, which is formally cor-
rect since the 2-loop results are leading order in ↵s.

Results for mSUGRA and Implications for Supersym-
metry at the LHC. To determine the implications of the
3-loop corrections for the LHC, we consider here the well-
known framework of minimal supergravity (mSUGRA),
defined in terms of GUT-scale parameters, for which de-
tailed collider studies have been carried out.
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the theoretical uncertainty is both non-negligible
and non-universal.

2.4. The BR(Bs ! µ+µ�) and BR(Bd !
µ+µ�) Constraints

To date, the most precise measurements of
BR(Bs ! µ+µ�) and BR(Bd ! µ+µ�) have
been provided by the CMS Collaboration [19]:

BR(Bs ! µ+µ�) = (3.0+1.0
�0.9)⇥ 10�9 ,

BR(Bd ! µ+µ�) = (3.5+2.1
�1.8)⇥ 10�10 , (2)

and the LHCb Collaboration [20]:

BR(Bs ! µ+µ�) = (2.9+1.1
�1.0)⇥ 10�9 ,

BR(Bd ! µ+µ�) = (3.7+2.4
�2.1)⇥ 10�10 . (3)

These numbers correspond to time averaged (TA)
branching fractions, and are in good agreement
with the SM TA expectations [21] 2:

BR(Bs ! µ+µ�) = (3.56± 0.30)⇥ 10�9 , (4)

BR(Bd ! µ+µ�) = (1.07± 0.10)⇥ 10�10 . (5)

An o�cial combination of the CMS and LHCb
results can be found in the conference note [22]:

BR(Bs ! µ+µ�) = (2.9± 0.7)⇥ 10�9 , (6)

BR(Bd ! µ+µ�) = (3.6+1.6
�1.4)⇥ 10�10 . (7)

In our analysis, we combine BR(Bs ! µ+µ�)and
BR(Bd ! µ+µ�)into a single quantity, Rµµ =
(BR(Bs,d ! µ+µ�))NP /(BR(Bs,d ! µ+µ�))SM

using the following relation that holds in all mod-
els with minimal flavour violation (MFV), includ-
ing the CMSSM and the NUHM1:

✓
BR(Bs ! µ+µ�)

BR(Bd ! µ+µ�)

◆

MFV

= 30.35± 2.12 . (8)

We note that CMS has provided an estimate of
Rµµ = 1.01+0.31

�0.26 [?] from combining its mea-
surements. Here we construct a joint likelihood
for the four measurements (2, 3) using correla-
tion coe�cients between BR(Bs ! µ+µ�)and

2The results from the ATLAS [?], CDF [?] and D0 [?]
Collaborations are not considered in our study, as they
have less precision than the results of CMS and LHCb.

BR(Bd ! µ+µ�)of �50% in CMS and +3%
in LHCb [24]. The log-likelihoods of quantities
with asymmetric errors are approximated using a
treatment equivalent to formula (4) in [25]. We
assume the ratio of hadronization fractions of the
b quark, fd/fs = P (b ! B0

s )/P (b ! B0
d) to be

the same in both experiments.

Our final estimate after profiling on the theory
uncertainties and fd/fs is:

✓
BR(Bs,d ! µ+µ�)EXP

BR(Bs,d ! µ+µ�)SM

◆

TA

= 0.94+0.22
�0.21 .

We have checked that our approach reproduces
with good accuracy both the results in (6) and the
CMS Rµµ value, giving us confidence in our ap-
proximate treatment. The contribution this func-
tion makes to the global �2 function is shown as
the green line in Fig. 2, where it is compared with
the contribution calculated previously on the ba-
sis of the data made available in November 2012.

2.5. The Dark Matter Constraints

There are two important dark matter con-
straints on the CMSSM and NUHM1 parame-
ter spaces. One is the cosmological relic den-
sity ⌦�h

2 and the other is the upper limit on the
spin-independent elastic cold dark matter scatter-
ing cross section �SI . Upper limits on the spin-
dependent cross section do not impinge on the
parameter spaces of the models we study.

Previously, we used Micromegas 2.4.5 to cal-
culate ⌦�h

2, which we checked gave results simi-
lar to the independent SSARD code in the regions
of interest. Here we use Micromegas 3.2. The
recent results from the Planck satellite [?] refine
the previous observational estimate of ⌦�h

2, but
this does not alter significantly the implications
for other observables.

There are important uncertainties in the calcu-
lation of �SI that we incorporate in the present
analysis. The spin-independent matrix element
for �-nucleon scattering is proportional to a pa-
rameter fN that can be written as

fN
mN

=
X

q=u,d,s

f
(N)
Tq

↵3q

mq
+

2

27
f
(N)
TG

X

q=c,b,t

↵3q

mq
, (9)
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Combined:
Buchmuller et al.
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High and low tan β gone!
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Something left?
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Δχ2 map of m0 - m1/2 plane
Final run I

Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, 
Heinemeyer, Isidori, Marrouche, Martinez Santos, Olive, Rogerson, 
Ronga, de Vries, Weiglein

Preliminary
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Elastic cross sections

Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, 
Marrouche, Martinez Santos, Olive, Rogerson, Ronga, de Vries, Weiglein

Preliminary
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May require more general models
which are concordant with LHC MET; 
Higgs; and Bs →μ+μ-; and Dark Matter
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Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02

μ and/or mA free

subGUT models: Min < MGUT

with or without mSUGRA

May require more general models
which are concordant with LHC MET; 
Higgs; and Bs →μ+μ-; and Dark Matter
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Ellis, Luo, Olive, Sandick

NUHM1 models with μ or mA free
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Moving beyond the CMSSM-like models
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Moving beyond the CMSSM-like models

Models with 
Strongly Stabilized Moduli;

Pure Gravity Mediation (PGM)
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Moving beyond the CMSSM-like models

Models with 
Strongly Stabilized Moduli;

Pure Gravity Mediation (PGM)
Usually ignored in phenomenological studies of the 
MSSM

In general, many moduli:

Volume Modulus: destabilization

Polonyi-like fields: cosmological entropy production; 
gravitino production; LSP production....
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Consider a Polonyi-like modulus
	 but with a non-minimal kinetic term

K = ZZ̄ � (ZZ̄)2

⇤2

and Polonyi superpotential

W = µ2(Z + ⌫)

Dine et al,
Kitano

Z =
1p
2
(z + i�)where

hziMin '
⇤2

p
6

, h�i = 0 , ⌫ ' 1p
3
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Impact on Phenomenology

Soft scalar masses

A terms A0 '
1
2
m3/2⇤2

m3/2 = heK/2W i ' µ2/
p

3

m2
z,� '

12 m2
3/2

⇤2
� m2

3/2

m2
0 = m2

3/2

+ anomalies
gaugino masses anomalies
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Impact on Phenomenology

Soft scalar masses

A terms A0 '
1
2
m3/2⇤2

m3/2 = heK/2W i ' µ2/
p

3

m2
z,� '

12 m2
3/2

⇤2
� m2

3/2

Massive scalar sector as in split 
susy, with anomaly mediation for 

A-terms and gaugino masses

m2
0 = m2

3/2

+ anomalies
gaugino masses anomalies
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Pure Gravity Mediation
Two parameter model!

m0 = m3/2; tan β 

gaugino masses (and A-terms) generated through 
loops

⇒ Push towards very large masses

M1 =
33
5

g2
1

16⇡2
m3/2 ,

M2 =
g2
2

16⇡2
m3/2 ,

M3 = �3
g2
3

16⇡2
m3/2 .

Evans,Ibe,Olive,Yanagida
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The sfermion and  gravitino have masses O(100) TeV.

The higgsino and the heavier Higgs boson also have 
masses O(100) TeV.

The gaugino masses are in the range of  hundreds to 
thousands of GeV.

The LSP is the neutral wino which is nearly degenerate 
with the charged wino.

The lightest Higgs boson mass is consistent with the 
observed Higgs-like boson, i.e. mh ~ 125 - 126 GeV.

Pure Gravity Mediation
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Phenomenological Aspects

Higgs Mass Neutralino mass
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Somewhat more freedom with 
non-universal Higgs masses
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Phenomenological Aspects

gluino Mass chargino mass
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Dark Matter

•Dark matter is something else (axion) 

•LSPs from gravitino or moduli (Z) decay

•m3/2 ~ 650 TeV, and Ωh2 ~ 0.11

⌦�h2 =
m�

m3/2
⌦3/2h

2 = 0.4(
m�

TeV
)(

TR

1010GeV
)
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Other Phenomenological Aspects

Dark Matter:
 LSP is a wino
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Potential problem for wino 
dark matter from Fermi/HESS 
(Fan + Reese; 
Cohen, Lianti, Pierce, Slatyer)
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Summary

LHC susy and Higgs searchs have pushed CMSSM-like 
models to “corners”

Though many phenomenological solutions are still viable

Models with strong moduli stabilization:

easier for inflation, 

no cosmological problems

interesting phenomenology

Heavy scalar spectrum with anomaly mediated gaugino 
masses

Challenge lies in detection strategies
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