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• With the discovery of the Higgs the SM is now a 
complete description for particle physics 
(forgetting DM).

• On the other hand that same discovery by itself 
makes the theory fine-tuned.

• The lack of any other experimental evidence 
makes us believe that either the SM is the only 
theory above the Fermi scale or....
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• Therefore since the stops have to be heavy 
one can allow the first and second 
generations of sparticles to be much 
heavier than the third one since their 
contribution to the fine-tuning is small. This 
will explain why we have not seen them.



• Therefore since the stops have to be heavy 
one can allow the first and second 
generations of sparticles to be much 
heavier than the third one since their 
contribution to the fine-tuning is small. This 
will explain why we have not seen them.

• On the other hand the stops cannot be 
arbitrarily heavy because of the Higgs mass.
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•  This kind of scenarios in where the first 
two generations are heavy are known as 
natural susy scenarios.

• They have different phenomenology since 
there are much less cascade decays.

• Can these scenarios be realized on a top-
down approach?
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•  Yes (if not I won’t be giving this talk)

• In general one needs, at least, two different 
sources of susy breaking:

• One for the heavy sfermions

• Another one for the third family (plus 
gauginos)
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sector

• And communicated via two mechanisms:

• Gauge mediation (flavorful) to the first 
two generations

• Gravity mediation to the third one and 
gauginos

The Model

X = M⇤ + ✓2F
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•  This scenario has the following key features:

• No flavor problem in the first two families 
since gauge mediation is flavor blind.

• Possibility of using the Giudice-Masiero 
mechanism to generate μ and B, for this to 
happen the Higgses should not get masses 
from gauge mediation.

• Generation of A-terms for the third family.
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•  The realization is as follows:

• There is a new gauge group U(1) under 
which the first two families are charged 
with opposite charges.

• The third family and the Higgses are 
uncharged under this new group.
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Table 1: U(1)0 charges used in the model.  i = (qi, li, uc
i , d
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c
i), i = 1, 2, 3, denote the

three SM generations.

the first and second generations.

There are two sources of SUSY breaking in the model. The first is gravity mediation,
which is universal. Secondly, there is another (secluded) sector where SUSY is broken at
a scale M

⇤

by a chiral field X = M
⇤

+ ✓2F , with
p
F ⌧ M

⇤

. This extra source of SUSY
breaking is communicated to the visible sector through the U(1)0 interactions. Thus, only
the first and second SM generations are sensitive to these e↵ects at the leading order,
acquiring soft masses

m̂2 =
ĝ2(M

⇤

)

128⇡4

F 2

M2
⇤

, (1)

with ĝ the U(1)0 gauge coupling constant. This is also the same order as the U(1)0 gaugino
mass, M�̂ ⇠ m̂. After U(1)0 symmetry breaking, the vector multiplet (Âµ,Re('1 �
'2), �̂,Re('̃1 � '̃2)) and the chiral multiplet (S,'1 + '2, S̃, '̃1 + '̃2, S̃) get masses of
O(v̂). These also receive small corrections from SUSY breaking, of O(m̂). Finally, the
gravitino mass is given by m3/2 ' kF/

p
3MP , where MP is the Planck scale and we will

consider the theory-dependent numerical prefactor k ⇠ O(1). Since gravity is the only
interaction communicating SUSY breaking to the gauge and Higgs sectors, as well as
the third generation, all the soft parameters are of order m3/2. Moreover, µ ' m3/2 can
also be easily explained via the Giudice-Masiero mechanism [4]. Thus, m3/2 has to be of
electroweak size, but large enough to generate a third generation of squarks in the TeV
region so we can explain a Higgs mass around 125-126 GeV [8, 9].

Notice that apart from providing the same satisfactory explanation to the µ-bµ problem
as in gravity mediation, this combined scenario has also naturally suppressed flavour
changing neutral currents (FCNC). Indeed, the approximate degeneracy between the first
two families and the relative large mass splitting with the (lighter) third generation helps
in suppressing FCNC operators.

2.1 Electroweak symmetry breaking and the Higgs mass

This particular implementation of the LSSM is completely specified by eight parameters
(and the sign of µ). First we have the scales m0, M1/2 and A0, that fix the gravity-
mediation contribution to the soft scalar masses, gaugino masses and a terms, respec-
tively, at the ultraviolet scale. We will choose this to be the grand unification scale MGUT,
defined by g1(MGUT) = g2(MGUT). The U(1)0-mediation SUSY breaking parameters in-
clude F/M

⇤

and M
⇤

. The other U(1)0 parameters are the gauge coupling constant ĝ and
the symmetry breaking vev v̂. Some of these parameters can be bounded or related by dif-
ferent arguments [6]. First, we will trade the SUSY breaking scale F/M

⇤

for the common

3



• ψ1,2 represent the first and second generation ψ3 

the third generation, φ1,2 and S are needed to 
break the extra U(1)
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•  Assuming the usual superpotencial with some 
messengers charged under the U(1):!

!

!

• One generates the following mass for all third 
generation scalars (plus the extra gaugino):

m2 =
g2

128⇡4

F 2

M2
⇤

W = �2X�1



• The existence of the extra U(1) forbids some 
Yukawa couplings for the first and second 
generations but they can be generated via non-
renormalizable operators.!

!

• To reproduce the CKM one needs to break the 
U(1) and:

The U(1) gauge theory is by construction anomaly free because the anomalies cancel between
the first and the second generation. We will also introduce messengers Φ1,2 with hypercharges

ŶΦ1,2
= ±1 coupled to the superfield X by the superpotential term

W = Φ2XΦ1 (3)

Gauge interactions mediated by the U(1) gauge bosons and corresponding gauginos
(Âµ, λ̂) will transmit supersymmetry breaking to the sfermions of the first and second gen-
erations and give them a common mass mQ̃1,2

= mŨc
1,2

= mD̃c
1,2

= mL̃1,2
= mẼc

1,2
= m̂

with [4]

m̂2 = 2
α̂2(M∗)

16π2

F 2

M2
∗

(4)

as well as a similar Majorana mass to the gaugino λ̂: Mλ̂ ≃ m̂. While we will postpone a
more precise constraint on m̂ we just point out that, as stated above, we will require that
m̂ ≫ 1 TeV.

Also notice that the U(1) gauge symmetry should be spontaneously broken at some scale
v below M∗ when some (SM singlet) Higgs fields ϕ1,2 with hypercharges Ŷϕ1,2

= ±1 acquire
vacuum expectation values (VEV) along the direction ⟨ϕ1⟩ = ⟨ϕ2⟩ = v not to create a
D-term breaking mass for first and second generation sfermions. In fact the U(1) gauge
symmetry does forbid some Yukawa couplings which should be generated after spontaneous
symmetry breaking by non-renormalizable superpotential operators as [11]

1

M2
∗

(
y11ϕ

2
2 ψ1Hψ

c
1 + y22ϕ

2
1 ψ2Hψ

c
2

)
+

1

M∗

(y13ϕ2 ψ1Hψ
c
3 + y23ϕ1 ψ2Hψ

c
3) (5)

where H stands for either H2 orH1 depending on the particular SM structure of the coupling.
In particular these operators can be generated by integration of massive vector like scalar
fields with a renormalizable superpotential as in Ref. [11]. Although the precise value of
v/M∗ will depend on the particular theory describing the flavor in the quark sector one can
generically deduce that v should be at most a few orders of magnitude below M∗. In fact let
us notice that although the U(1) symmetry should not be identified with a flavor symmetry
it can be embedded into it and should not forbid some Yukawa couplings as e.g. Y U,D

23 . In
particular the most stringent condition comes from the hierarchical structure of the fermion
mass matrix [12] in the up sector which yields Y U

23 ≡ v yU23/M∗ ≃
√

mcmt/v2U ≃ 10−1 [where
vU (vD) stands for the VEV of H2 (H1)] which, assuming that the couplings yU,Dij stay in
perturbative values, puts the lower bound v/M∗ ! 10−2. On the other hand in the leptonic
sector the right handed neutrino supermultiplets N c

i are U(1) singlets and any structure for
the Majorana mass matrix determined by the corresponding flavor symmetry will be allowed
by the U(1) gauge symmetry.

A simple mechanism to spontaneously break the U(1) symmetry is by the superpotential

W = λS(ϕ1ϕ2 − v2) (6)

4
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•  One can break the extra U(1) group via 
the following superpotential:!

!

• Once the gauge group is broken all extra 
fields (φ, S, gauge bosons and its 
superparners) get a mass of order v.

W = �S('1'2 � v2)



•  The gravitino will get a mass (from the cancelation 
of the cosmological constant).!

!

• It will be comunicated to the third family via the 
operators:

m3/2 ' Fp
3MP

where a U(1) singlet field S has been introduced. Even if the fields ϕ1,2 acquire by gauge
mediation a supersymmetry breaking mass m̂ as in Eq. (4) since the scale of U(1) breaking
is v ≫ m̂ we will safely neglect for the moment the latter and consider the supersymmetric
breaking of U(1). The supersymmetric potential is then

VSUSY = λ2
∣∣ϕ1ϕ2 − v2

∣∣2 +
ĝ2

2
(|ϕ1|2 − |ϕ2|)2 + λ2|S|2(|ϕ1|2 + |ϕ2|2) (7)

whose minimization yields ⟨S⟩ = 0, ⟨ϕ1⟩ = ⟨ϕ2⟩ = v and the spectrum consists in a massive
gauge vector multiplet (Âµ, Re(ϕ1 −ϕ2), λ̂, ϕ̃1 − ϕ̃2) with a mass

√
2ĝv and a massive chiral

multiplet (S,ϕ1 + ϕ2, S̃, ϕ̃1 + ϕ̃2) with a mass
√
2λv.

Of course the gauge mediation mechanism gives a common supersymmetry breaking soft
square mass m̂2 to ϕ1,2 which translates into a tiny modification in the previously obtained
supersymmetric potential (7) as

VSOFT = m̂2(|ϕ1|2 + |ϕ2|2). (8)

Its minimization translates in particular into the shift ⟨ϕ2
1⟩ = ⟨ϕ2

2⟩ ≡ v̂ 2 = v2 − m̂2/λ2 while
the supersymmetric spectrum is spoiled by O(m̂2/v2). In particular there are two scalars,
[ReS,Re (ϕ1+ϕ2)], with degenerate masses,

√
2λv̂ and one scalar, Re(ϕ1−ϕ2), with square

mass 2ĝ2v̂2 + m̂2. There are also two pseudoscalars [ImS, Im (ϕ1 + ϕ2)] with degenerate
masses

√
2λv. In the fermionic sector there are two degenerate Weyl spinors (S̃, ϕ̃1 + ϕ̃2)

with masses
√
2λv̂, while the Weyl fermion ϕ̃1 − ϕ̃2 and the gaugino λ̂ get mixed with mass

eigenvalues M± =
√
2ĝv ± 1

2Mλ̂ +O(M2
λ̂
/ĝ2v2).

For the moment we have not broken supersymmetry neither in the SM gauge and Higgs
sectors nor in the third generation of quarks and leptons sector. However gravity is a universal
messenger of supersymmetry breaking and in general it cannot be neglected neither in the
sectors where supersymmetry is unbroken nor in the sector where supersymmetry was already
broken by gauge interactions since it can create flavor problems. In fact in any supergravity
theory supersymmetry breaking appears with a non-vanishing gravitino mass which, from
general arguments based on the cancellation of the cosmological constant, is given by

m3/2 ≃
F√
3MP

(9)

where the numerical prefactor is theory dependent and we will consider generically to be
O(1). The main drawback of GrMSB as the only source for communication of supersymmetry
breaking is precisely that there is no generic reason why it should be flavor blind, unlike the
GMSB mechanism. In principle it will provide supersymmetry breaking masses m2

ij and

trilinear couplings AU,D
ij , which are not necessarily flavor diagonal 2, on top of the gaugino

masses MA. In the absence of a particular fundamental underlying theory one can assume
that those masses are generated from effective operators as in

1

M2
P

∫
d4θXX†Q†

iQj ,
1

MP

∫
d2θXQiH2U

c
j ,

1

MP

∫
d2θXWAWA (10)

2Unless there is some flavor symmetry in the underlying supergravity or string theory.

5

with O(1) coefficients, which yield that all of them are of the order m3/2. Moreover the
effective operators involving the Higgs sector

∫
d4θX†H1H2,

∫
d4X†X(H1H2 + h.c.) (11)

provide a simple explanation [6] of the generation of µ ≃ m3/2 and Bµ ≃ m2
3/2 terms. Of

course to get a realistic theory of electroweak symmetry breaking m3/2 has to be at the
electroweak scale.

The GrMSB mechanism generates supersymmetry breaking parameters at the scale Q ≃
MP . The corresponding parameters at the electroweak scale are obtained by integrating a set
of renormalization group equations. Since we are not considering a particular supergravity
model and consequently we can not make detailed predictions of the low energy supersym-
metric parameters, for the purpose of this letter it is enough to consider the contribution from
the dominant color SU(3) corrections which are given by m2

Q̃3

≃ m2
Ũc
3

≃ m2
D̃c

3

≃ m2
3/2 +∆m2

with [4]

∆m2 =
2C3

b3

(
1−

α2
3(mZ)

α2
3(MP )

)
M2

3 (12)

where C3 = 4/3 and b3 = −3 are respectively the quadratic Casimir of quarks and beta
coefficient for SU(3) and M3 = M3(MP ) is the gluino mass generated by GrMSB. From
Eq. (12) and assuming M3 ≃ m3/2 one obtains m2

Q̃3

≃ 8m2
3/2. Of course in particular

supergravity models this ratio should be computed in detail and the subsequent conclusions
could change a bit although we believe that our results are rather generic. For that reason
from here on we will be rather qualitative and will assume that all supersymmetry breaking
parameters generated at MP are O(m3/2).

For the moment we have different scales, in particular M∗, F , m̂ and m3/2 which are
related to each other by phenomenological arguments. In principle the gravitino mass m3/2

is related to the Higgs parameters µ and Bµ and to the mass of third generation squarks
mQ̃3

at low scales by Eq. (12). Present bounds on the Higgs mass impose typical scales
mQ̃3

∼ At ∼ 1 TeV which in turn are consistent with a gravitino mass m3/2 ≃ 300 GeV. On
the other hand the gluino mass at low scales is M3 ≃ α3(mZ)/α3(MG)m3/2 ≃ 3m3/2 ≃ 1
TeV.

3. The fine-tuning. It is well known that third generation squark and gluino masses at
the TeV scale generate in the MSSM a little hierarchy problem equivalent to a fine-tuning.
In particular for a Higgs mass mH ≃ 120 (122) GeV the MSSM sensitivity ∆ with respect
to the different parameters yields ∆ ≃ 100 (200) [13]. It is possible to alleviate (solve)
this problem by enlarging the MSSM with new (singlet or triplet) states coupled to the
MSSM superpotential Higgs sector [14] or with new gauge interactions at low energy which
can contribute by F and/or D-terms to the Higgs mass [15]. Since we will be considering
only the minimal supersymmetric extension of the Standard Model in this work, and in
view of present bounds from LHC [1,2], it should be useless to try to improve the fine-tuning
triggered by the heavy first and second generation sfermions over that which already appears

6
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due to third generation squarks and gluinos. We will then impose an upper limit on m̂ by
imposing an upper bound on the sensitivity with respect to m̂2 [17]

∆m̂2 =

∣∣∣∣
m̂2

m2
Z

∂m2
Z

∂m̂2

∣∣∣∣ (13)

as ∆m̂2 ! 200. In fact as Tr Ŷ m2 = 0 the leading contribution of first and second generation
sfermions appears at two-loop as [16]

∆β(2)
m2

H1,2

=
3

16π2

(
α2
2Tr

[
3m2

Q̃
+m2

L̃

]
+
α2
1

25
Tr

[
m2

Q̃
+ 3m2

L̃
+ 8m2

Ũc + 2m2
D̃c + 6m2

Ẽc

])
(14)

Using the fact that as m̂2 ≫ M2
3 the renormalization of first and second generation sfermions,

Eq. (12), is tiny and can be safely neglected one can easily approximate their correction
between m̂ and M∗ from Eq. (14) as 3

∆m2
H1,2

≃
6

π

(
∆α2 +

1

33
∆α1

)
m̂2 (15)

where ∆αr ≡ αr(M∗)−αr(m̂) for r = 1, 2. We are neglecting in Eq. (15) the small correction
similar to that of Eq. (12) produced by the running of α̂ between M∗ and v which we have
checked to contribute by at most a few percent to the value of sfermion masses at the low
scale. From this one can easily extract the sensitivity with respect to m̂ as it is shown in
Fig. 1. The fine-tuning of every contour line is one part in ∆m̂2 so we will impose the region
where ∆m̂2 < 200 as the fine-tuning generated by the third generations squarks and gluinos
at the TeV is no better. We can see that m̂ ! 10 TeV for any value of M∗ ! MG. From here
on we will fix m̂ = 10 TeV.

Once we have fixed m̂ ≃ 10 TeV, by fine-tuning arguments, and m3/2, by the phenomeno-
logical requirement that the third generation squarks have masses in the TeV region, to cope
with present bounds on the Higgs mass, one can determine the scale M∗ where supersym-
metry should be broken for the first and second generation sfermions. In fact using Eqs. (9)
and (12) one can straightforwardly obtain

M∗ ≃
g̃ 2

4π
MG ≃ 1015GeV (16)

where we are assuming for the last relation that α̂(M∗) ≃ 1/20.
4. FCNC. We now summarize here the main features of the model at low scale. The

first and second generation sfermions are almost degenerate with supersymmetry breaking
masses m̂ ≃ 10 TeV mediated by GMSB of a U(1) symmetry under which they are charged.
Supersymmetry breaking masses of third generation sfermions, gauginos and Higgsinos are
generated by GrMSB with m3/2 ≃ 300 GeV which translates into third generation squark

3Below m̂ first and second generation sfermions are decoupled and they do not contribute to the β-function
in (14).

7

• To fix the scale of the first two families, a 
fine-tuning less than .5% is imposed.



How to fix the overall scale?
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similar to that of Eq. (12) produced by the running of α̂ between M∗ and v which we have
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logical requirement that the third generation squarks have masses in the TeV region, to cope
with present bounds on the Higgs mass, one can determine the scale M∗ where supersym-
metry should be broken for the first and second generation sfermions. In fact using Eqs. (9)
and (12) one can straightforwardly obtain

M∗ ≃
g̃ 2

4π
MG ≃ 1015GeV (16)

where we are assuming for the last relation that α̂(M∗) ≃ 1/20.
4. FCNC. We now summarize here the main features of the model at low scale. The

first and second generation sfermions are almost degenerate with supersymmetry breaking
masses m̂ ≃ 10 TeV mediated by GMSB of a U(1) symmetry under which they are charged.
Supersymmetry breaking masses of third generation sfermions, gauginos and Higgsinos are
generated by GrMSB with m3/2 ≃ 300 GeV which translates into third generation squark

3Below m̂ first and second generation sfermions are decoupled and they do not contribute to the β-function
in (14).
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Figure 1: Contour levels of the sensitivity ∆m̂2 of m2
Z with respect to m̂2 in the plane (m̂,M∗).
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zsd
Λ2

(
d̄Lγ

µsL
)2

(18)
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|Im zsd| ≃
α2
3

54
f(m2

g̃/m
2
Q̃3

)
(
∆m̂2/m̂2

)2
sinα sin 2γ (20)

where γ is the CP -violating phase, α is the angle between the first and second generations
in the mixing matrix in the gluino-quark-squark coupling, which is expected to be α ≃ 2θc
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∣∣∣∣ (13)
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• m3,M1/2=O(1 TeV)





•  In order to study the phenomenology of 
the model:



•  In order to study the phenomenology of 
the model:

•  EW breaking is imposed



•  In order to study the phenomenology of 
the model:

•  EW breaking is imposed

•  The Higgs mass is imposed to be 125 
GeV



•  In order to study the phenomenology of 
the model:

•  EW breaking is imposed

•  The Higgs mass is imposed to be 125 
GeV

•  All experimental constrains are satisfied



•  In order to study the phenomenology of 
the model:

•  EW breaking is imposed

•  The Higgs mass is imposed to be 125 
GeV

•  All experimental constrains are satisfied

•  m1,2>10 TeV



• This is scenario A, scenario B is similar but 
with the mass of the gluino of 2.25 TeV
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Figure 1: Higgs and supersymmetric particle spectrum for the benchmark point A intro-
duced in this section.

b̃R is heavier than b̃L.1 Since in order to reproduce the adequate Higgs mass at least one
of the stops must be significantly heavy, mt̃2 & 1 � 2 TeV, sbottom masses are bounded
to be quite large. This implies that, even though there exist regions where the lightest
sbottom mass is below Mg̃, for gluino masses accessible at the LHC (Mg̃ . 2 TeV), gluino
decays will be in general dominated by top/stop final states.

In order to illustrate the phenomenological features of this model we choose a generic
benchmark point with

m0 = 6 TeV, M1/2 = 0.65 TeV, A0 = �10.2 TeV, (2)

a positive sign for µ (µ = 3.8 TeV) and tan � = 10. As explained above, the U(1)0-
mediation scale is set to m̂ = 10 TeV. We will refer to this as point A. The resulting
spectrum contains a lightest CP even Higgs boson of 125.4 GeV, consistent with the
experimental limits. The values for all the non-SM particles are illustrated in Figure 1.
Because of the large value of µ, the lightest neutralino/chargino states are gaugino-like.
In particular, the lightest supersymmetric particle (LSP) is the lightest neutralino (mostly
Bino). As explained in the next section, the most characteristic (and e�cient) signal to

1Indeed, at the leading order, for moderate values of tan� and M1/2 . m0, A0 we have, �m2
uc
3

>

�m2
q3

> �m2
dc3

. Notice though that, because of the large masses for the first and second generations, their

leading two-loop e↵ects can have some impact in this one-loop relation.

5

tan β=10



• Not having the first of second generation makes 
most of the cascade decays unavailable!

•  For EWinos we have the following processes:!

!

!

• But the cross-section is too low:

Phenomenology of the LSSM

look for at the LHC involves gaugino production and decays into the stop sector. In this
point, the lightest stop has a mass of around 1600 GeV, while the left-handed states,
which are much heavier, are around 4200 GeV. The gluino is relatively heavier than the
lightest stop, with a mass of ⇠ 1800 GeV.

For latter convenience, let us also introduce a very similar point, referred to as point
B from now on. The values of the input parameters are

m0 = 5.8 TeV, M1/2 = 0.85 TeV, A0 = �9.85 TeV, (3)

and the same sign for µ and value for tan �. These parameters have been purposely
chosen so that the spectrum is essentially the same as point A, but with somewhat heavier
gauginos. In particular, we set M1/2 so the gluino mass is around 2250 GeV.

3 LHC signals

Given the particular features of this model, the list of observable signals at the LHC is
quite short. As explained in Ref. [6], the decoupling of the first and second generations
of sfermions reduces the possible decays of charginos and neutralinos to

�0 !
8
<

:

� W/Z
� h

ff̃ (f = ⌧, t, b)
.

Thus, leptonic signals can only come from the decays of the W or Z and the multijet+��ET

signal is much enhanced compared to standard MSSM scenarios. Still, neutralino/chargino
production, being of electroweak size, is not the most e�cient way of testing signals for
this model (�(pp ! �0(±) + X) = 0.7 (2.5) ab). Indeed, the leading signal is gluino pair
production, with subsequent decays into the third generation states

pp ! g̃g̃, g̃ !
⇢

tt̃1 ! bb̄ W+W� �0
1

bb̃1 ! bb̄ �0
1

,

where in the stop decay chain we have used the fact that, since the lightest stop is mostly
right handed, charged decay modes t̃1 ! b�±

1 are highly suppressed, and the decay is
dominated by the channel t̃1 ! t�0

1, see Table 2. Moreover, for the benchmark points
presented in the last section, gluino decays into bottom/sbottom are not allowed, since
the lightest sbottom is much heavier than g̃. As explained in the previous section, even if
sbottom masses below the gluino mass are possible in the allowed region of the parameter
space, gluino decays are still expected to be dominated by top/stop final states. Therefore,
the channel discussed here will o↵er the clearest signal.

We have also considered, for completeness, stop pair production. For the points we
are discussing, since the lightest stop has a fairly large mass, the resulting pp ! t̃1t̃

⇤

1 cross
section seems to be too small to consider this an e�cient search channel. For instance, for
the LHC at

p
s = 14 TeV, we find for the point A, prior to any cuts, �(pp ! t̃1t̃

⇤

1 ) = 0.1 fb
while �(pp ! g̃g̃) = 1.612 fb. These numbers, as well as all the new physics signals

6

�(pp ! �+X) = 0.7 ab



• We are left with either direct production of 
stops or production of gluinos which then 
decay into stops (sbottoms are heavier)!

• But:!

!

• Therefore the signal we will look for is:

�(pp ! g̃g̃) = 1.612 fb, �(pp ! t̃t̃) = 0.1 fb

pp ! g̃g̃, g̃ ! tt̃ ! bbW+W��
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•  The signal is calculated with Feynrules and 
Madgraph5, Pythia6 for hadronization and 
PGS for detector simulation

• The main backgrounds are:

• tops+jets: calculated with ALPGEN

• tops+W/Z+jets: calculated with 
Madgraph





Before b -tag After b -tag

Signal Point A 1.612 fb 0.286 fb
Signal Point B 0.170 fb 0.032 fb
Background 1477 pb 19.18 pb

Table 3: Signal and background cross sections before and after applying b tagging. Points
A and B di↵er in the gluino mass: Mg̃ ⇡ 1.8, 2.25 TeV, respectively.

photons in the final state. Table 3 provides the results for both signal and background
before and after the three b tags and jet/photon restrictions.

As usual, the presence of the LSP at the end of the decay chains translates into a large
amount of missing energy. We have plotted the di↵erential cross section as a function
of the missing transverse energy (MET or ET/ ) in Figure 2. As can be observed, the
distribution for the signal is characterized by being somewhat flat, extending up to around
1800 GeV. In simulating the background, several technical issues make it di�cult to
generate the corresponding distribution up to such large energies, especially after requiring
the three b tags. After the background is run through Pythia and PGS, it extends up
to around 600 GeV (1500 GeV before b-tagging). To deal with this, we use di↵erent
estimation methods, explained below, and we will always assume a conservative point
of view when analyzing the results. First, Figure 2(a) illustrates the above-mentioned
necessity of b tagging, as otherwise the background typically dominates over all the range
of ET/ . In that figure we also show the results for signal and background after b tagging,
for comparison, as well as an estimation for the original background based on two linear
fits to data3. Figure 2(b) focuses on the results after the b tag. In this case, in order
to give an estimation for the background we have used several di↵erent methods. First,
we use a simple linear fit. Secondly, we also perform an analogous fit to two lines, as in
the case before b tagging. Finally, we have scaled down the background estimation before
b tagging to fit the b tagged data in the region where both are available. At any rate,
we observe that a discrimination between signal and background should be possible, but
demanding enough significance for a discovery may require a large integrated luminosity.

The detailed results using the di↵erent estimation methods, as well as di↵erent b-
tagging performances, are summarized in Table 4. In particular, we show in that table
the number of events and the significance obtained for an integrated luminosity of 200
fb�1 for point A. Being conservative, we can thus claim that an observation of this signal
at the LHC at

p
s = 14 TeV would require collecting luminosities & 200 fb�1. Although

this is quite a large amount of data, it is still well within the LHC luminosity projections
by the end of its operation. Point B marks the LHC reach for this kind of search. As
can be seen from the results in Table 4, even for an integrated luminosity of 1 ab�1 the
discovery of gluinos with masses ⇠ 2300 GeV would be challenging.

3This is a five parameter fit, where not only the slopes and intercepts of both lines are determined,
but also the point where both lines cross each other.
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•  We will demand three loose b-tags.
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•  We will demand three loose b-tags.

• We will demand four other jets and no 
photons in the final state.
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• Due to lack of computing power we had to 
extrapolate the background
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Figure 2: Di↵erential cross section as a function of the ET/ for
p
s = 14 TeV. (a) Com-

parison between signal and background before and after (tight) b tagging. (b) Signal and
background after b tagging, together with di↵erent estimations for the background in the
region ET/ & 600 GeV.

use a loose b-tag performance2. We also demand to see at least four other jets and no

2One can use di↵erent b-tag performances: loose, with a higher b-tag e�ciency but also higher prob-
ability for a light jet miss-tagging, and tight, with lower e�ciency but also lower fake rate. The exact
numbers for these e�ciencies can be found in the PGS documentation [19]. While the use of a tight b-tag
yields a larger reduction of the background, this e↵ect does not outweight the penalization on our signal,
and this becomes more evident as we look for heavier gluino masses.
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•  Whereas a gluino of 1.75 TeV (A) seems feasible in 
LHC14, a 2.25 (B) seems more doubtful in this 
conservative analysis.

Estimation ECut
T/ �Estimated

B �S S B S/
p
B

Method [GeV] [ab] [ab] L = 200 fb�1 (1000 fb�1)

Linear 850 (950) 17.1 (3.73) 106.6 (10.8) 21 (11) 3 (4) 11.5 (5.6)

Two-Line 950 (1100) 10.4 (1.43) 80.7 (7.01) 16 (7) 2 (1) 11.2 (5.9)

Two-Line 1100 (1400) 14.7 (0.96) 50.3 (2.26) 10 (2) 3 (1) 5.9 (2.3)
(Scaled)

Table 4: Results after applying three b-tags for the point A. Results for point B are given
in parentheses. The ‘linear’ estimation method fits a line to the b-tagged data. The ‘Two-
line’ finds the best fit of two lines to the b-tagged data. The ‘Two-line (Scaled down)’
method scales down the Two-line fit to the background before b tagging to fit the b-tagged
data. The energy at which the estimated background crosses the signal is given by ECut

T/ .
Finally, the rounded number of events and significance for point A (B) are for 200 fb�1

(1000 fb�1) of data.

4 Conclusions

Having in mind the results from current searches at the LHC, in Ref. [6] a simple scenario
containing the minimal set of parameters in the MSSM that are consistent with theoretical
and phenomenological constraints was introduced. The spectrum of the model is charac-
terized by gravity mediation-like masses for the Higgs, gaugino and third family sectors,
while the first and second generations are pushed up to ⇠ 10 TeV by SUSY breaking
contributions mediated by extra gauge interactions. In this short paper we have studied
the main signals of this model that can manifest at the LHC. These are characterized
by the absence of the first and second generations in the low energy phenomenology. We
have focused our analysis on strongly produced signals, as electroweak processes o↵er less
chance for a clear discovery. In particular, we focus on gluino pair production, which is
expected to be much more clear than the production of stop pairs.

We have studied di↵erent benchmark points, and here we have presented some repre-
sentative results. We choose one point where both gluinos and stops are heavy, & 1.5 TeV,
in order to illustrate the LHC reach for this model when the leading signal is gluino pair
production. In this case we observe that, being conservative, gluinos ⇠ 1800 GeV would
be observable at

p
s = 14 TeV, provided we have large luminosities & 200 fb�1. Also

from our results, we can infer that the LHC would not be sensitive to gluinos heavier than
⇠ 2300 GeV.

Let us finally remark that, as opposed to other standard MSSM-like models where
the first families of squarks and sleptons o↵er a more rich phenomenology, there are no
other places where this model could clearly manifest at the LHC. Thus, an excess in the
discussed channels together with the absence of any other signals might be a hint that
this kind of scenarios is being realized in nature. On the other hand, it would not be an
easy task to distinguish from other similar constructions where only the third family is
relatively light.
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•  In this talk I have introduced a realization for 
‘natural susy’ based on two sources of susy breaking

• Gauge mediation for the first two families 

• Gravity mediation for the third family, gauginos 
and Higgses

• In this top-down approach I have shown the 
prospects for discovery at the LHC producing 
gluinos that decays to stops. The reach seems to be 
for masses around 2 TeV.
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