

LPC-SUSY-NEF 2013

Ofir Gabizon on behalf of the ATLAS collaboration Weizmann Institute of Science

Production cross sections

Electroweakino and Slepton production

Search strategy

direct slepton (or stau)production

By electroweakino production (decay via sleptons, staus, gauge bosons and higgs)

Final states include leptons, bottom quarks initiated jet and hadronic taus.

Optimization done using simplified models and pMSSM models

Electroweakino and Slepton production

SM backgrounds

The backgrounds can be divided to two types:

Reducible - Processes containing nonprompt leptons or conversions/light quarks/gluons misidentified as leptons). Irreducible - (events containing real and isolated leptons)

Irreducible:

- ☐ NLO MC
- ☐ Generally normalize to data in control regions

Reducible background Estimated using data driven method:

- In the "matrix method" one expresses the number of events with real and fake leptons in the signal region in terms of the efficiency and fake rate kinematics, type, process
- u 'weighting method' (rescaling the yield of a fake-dominated sample of loosely identified leptons by the probability the loose lepton be identified as a tight lepton; probabilities depend on fake object kinematics, type, process)
- ☐ In the "ABCD method" the signal region yield is obtained by extrapolating the yields from control regions using two variables that are approximately independent.

Variables for background rejection

Each search is carried out in a number of signal regions. Each signal region is defined by an event selection based on various observables.

The transverse mass m_T is defined as the following:

- $\square m_T(p_T, q_T) = \sqrt{2(p_T q_T \overline{p_T} \cdot \overline{q_T})}$
- $egin{array}{l} \Box$ It is useful in $3l + E_T^{miss}$ rejecting WZ background as the E_T^{miss} and lepton not associated to the Z both come from the W

The "stransverse" mass variable

- flue Has an endpoint in the mass of the pair produced particle decaying to leptons is very effective in rejecting WW and $t\bar{t}$ background due to the lower mass of W.
- \Box This plot from $2l+E_T^{miss}$ shows how WW and $t\bar{t}$ are suppressed for $m_{\rm T2}>M_{\rm W}$ while the ZV background is much less affected

Variables used for background rejection

- The idea behind $E_T^{miss,rel}$ is to project the \vec{E}_T^{miss} vector on the momenta of the closest object (lepton, jet).
- Is it defined as the following:

$$E_{T}^{miss,rel} = \begin{cases} E_{T}^{miss} & \text{if } \Delta \varphi_{l,j} \geq \frac{\pi}{2} \\ E_{T}^{miss} \times \sin(\Delta \varphi_{l,j}) & \text{if } \Delta \varphi_{l,j} \leq \frac{\pi}{2} \end{cases}$$

- $E_T^{miss,rel}$ is very effective in rejecting background with instrumental E_T^{miss} .
- As can be seen from the plot it is effective in rejecting Z+Jets background, which has no genuine E_T^{miss}

The contransverse mass is defined as the following: $m_{CT}^2 = (E_T^{b1} + E_T^{b2})^2 - (\vec{p}_T^{b1} - \vec{p}_T^{b2})^2$ It is useful in rejecting $t\bar{t}$ as can be seen from this plot from $l + bb(h) + E_T^{miss}$

search for charginos and sleptons - overview

- lacktriangle 5 different signal regions using OS electons/muons leptons tageting decay through sleptons and gauge bosons
- f WW, tar t and WZ from normalization to CR and reducible background from matrix method

	SR-m _{T2,90}	SR-m _{T2,110}	SR-WWa	SR-WWb	SR-WWc		
lepton flavour	$e^{+}e^{-}, \mu^{+}$	$\mu^-, e^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$				
$p_{\mathrm{T}}^{\ell 1}$	-	_	> 35 GeV				
$p_{\mathrm{T}}^{\ell 1} \ p_{\mathrm{T}}^{\ell 2}$	-	_					
$m_{\ell\ell}$	Z	veto	< 80 GeV	< 130 GeV	_		
$p_{\mathrm{T},\ell\ell}$	_		> 70 GeV	< 170 GeV	< 190 GeV		
$\Delta\phi_{\ell\ell}$	-	_	< 1.8 rad				
$E_{ m T}^{ m miss,rel}$	> 40) GeV	> 70 GeV	_	_		
m_{T2}	> 90 GeV	> 110 GeV	_	> 90 GeV	> 100 GeV		

$SR-m_{T2,90}$	e^+	e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	1	15	19	19	53
Background total	2	± 2.3	20.7 ± 3.2	22.4 ± 3.3	59.7 ± 7.3
SR- <i>m</i> _{T2,110}	e^+e^-		$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	4		5	4	13
Background total	6.1 ± 2.2		4.4 ± 2.0	6.3 ± 2.4	16.9 ± 6.0
		SR-	-WWa	SR-WWb	SR-WWc
Observed		1	123	16	9
Background total		117.9	9 ± 14.6	13.6 ± 2.3	7.4 ± 1.5

search for charginos and sleptons - results

Search for charginos and neutralinos- overview

SR7h

SR7c

10

Selection

SRno7a SRno7h

- ☐ 6 different signal regions using 3 leptons targeting decay through sleptons and gauge bosons
- ☐ Irreducible background from MC and reducible background from matrix method

SR7a

SRno7c

Selection	SKIIOZa	SKIIOZU	SKIIOZC	SKZa	SKZU	SKZC		ν	ℓ
m _{SFOS} [GeV]	<60	60-81.2	<81.2 or >101.2	81.2–101.2	81.2–101.2	81.2–101.2	p $\tilde{\chi}_1^{\pm}$	ℓ p	$V \leftarrow V$
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>50	>75	>75	75–120	75-120	>120	1 Alabora	$\tilde{\tilde{\ell}}^{-}$ $\tilde{\chi}_1^0$	$\tilde{\chi}_1^{\overline{1}}$ $\tilde{\chi}_1^{\overline{0}}$
$m_{\rm T}$ [GeV]	-	-	>110	<110	>110	>110	The same of the sa	$\tilde{\ell} \sim \tilde{\chi}_1^0$	$\tilde{\chi}_{0}^{0}$
p_{T} 3 rd ℓ [GeV]	>10	>10	>30	>10	>10	>10	p $\tilde{\chi}_2^0$	ℓp	$\tilde{\chi}_2^0$ Z Z
SR veto	SRnoZc	SRnoZc	-	-	-	-		ℓ	l.
Selection			SRnoZa	sRr	noZb	SRnoZc	SRZa	SRZb	SRZc
Tri-boson			1.7 ± 1.7	0.6	± 0.6	0.8 ± 0.8	0.5 ± 0.5	0.4 ± 0.4	0.29 ± 0.29
ZZ			14 ± 8	1.8		0.25 ± 0.17	8.9 ± 1.8	1.0 ± 0.4	0.39 ± 0.28
$t\bar{t}V$			0.23 ± 0.2	23 0.21 :	± 0.19	$0.21^{+0.30}_{-0.21}$	0.4 ± 0.4	0.22 ± 0.21	0.10 ± 0.10
WZ			50 ± 9	20:		2.1 ± 1.6	235 ± 35	19 ± 5	5.0 ± 1.4
Σ SM irred	ucible		65 ± 12	22 :	± 4	3.4 ± 1.8	245 ± 35	20 ± 5	5.8 ± 1.4
SM reducib	ole		31 ± 14	7 :	± 5	1.0 ± 0.4	4+5	1.7 ± 0.7	0.5 ± 0.4
Σ SM			96 ± 19	29	± 6	4.4 ± 1.8	249 ± 35	22 ± 5	6.3 ± 1.5
Data			101	3	32	5	273	23	6
LPC-SUSY-NEE 2013 Ofir Gabizon (Weizmann Institute of Science) 11/10/2013									

LPC-SUSY-NEF 2013 Ofir Gabizon (Weizmann Institute of Science)

11/10/2013

Search for charginos and neutralinos-results

scenarios

Search for charginos and neutralinos - overview

12

- Two signal region requiring OS hadronic taus
- flue Reducible background estimated with "ABCD method" using tau id and $m_{
 m T2}$ as independent variables

Signal region	requirements
OS m _{T2}	at least 1 OS tau pair
	jet veto
	Z-veto
	$E_{\rm T}^{\rm miss} > 40~{\rm GeV}$
	$m_{\rm T2} > 90 {\rm GeV}$
OS m _{T2} -nobjet	at least 1 OS tau pair
	b-jet veto
	Z-veto
	$E_{\rm T}^{\rm miss} > 40~{\rm GeV}$
	$m_{\rm T2} > 100 {\rm GeV}$

SM process	SR OS $m_{\rm T2}$	SR OS $m_{\rm T2}$ -nobjet
top	$0.2 \pm 0.5 \pm 0.1$	$1.6 \pm 0.8 \pm 1.2$
Z+jets	$0.28 \pm 0.26 \pm 0.23$	$0.4 \pm 0.3 \pm 0.3$
diboson	$2.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.5 \pm 0.9$
multi-jet & W+jets	$8.4 \pm 2.6 \pm 1.4$	$12 \pm 3 \pm 3$
SM total	$11.0 \pm 2.7 \pm 1.5$	$17 \pm 4 \pm 3$
data	6	14

Search for charginos and neutralinos-results

13

LPC-SUSY-NEF 2013 Ofir Gabizon (Weizmann Institute of Science)

11/10/2013

Search for charginos and neutralinos- overview

☐ Two signal regions requiring one lepton and two b-tagged jets

Two signal regions SRA and SRB have in common the following requirements:

- E_T^{miss} >100GeV
- $m_{CT} > 160 GeV$
- $m_{bb} > 160 GeV$

	SRA	SRB
Number of <i>b</i> -tagged jets	2	2
$m_{\rm T}~({\rm GeV})$	100-130	> 130

Background estimated with a maximum likelihood fit using the yields in the control and signal region and the MC transfer factors as input, keeping the overall normalization of the W+jets and $t\bar{t}$ backgrounds as free parameters. This is done across 8 bins in m_{bb}

	SRAh	SRBh
Observed events	4	2
Background estimate		
$t\bar{t}$	2.9 ± 2.8	1.0 ± 0.6
W + jets	0.7 ± 0.4	0.3 ± 0.2
Single top	1.6 ± 1.3	0.6 ± 0.4
Z+jets	$0.01^{+0.02}_{-0.01}$	$0.00^{+0.01}_{-0.00}$
Diboson (VV)	$0.01^{+0.05}_{-0.01}$	$0.05^{+0.07}_{-0.05}$
WH	0.18 ± 0.10	0.12 ± 0.07
$t\bar{t}+V$	0.01 ± 0.01	0.11 ± 0.06
Total	5.4 ± 3.1	2.1 ± 0.7

Search for charginos and neutralinos- results

Search for Supersymmetry with 4 leptons or moreoverview

16

SR0noZa

>4

 ≥ 0

extended veto

□ 3 d	ifferent signo	ıl regio	ons using 4 le	eptons and 2	using 3 lepto	ons and 1	p	
SR	$N(\ell = e, \mu)$	$N(\tau)$	Z Candidate	$E_{\rm T}^{\rm miss}[{\rm GeV}]$	$m_{\rm eff}[{ m GeV}]$	Scenario	111	$ ilde{\chi}_2^0$

>50

SR0noZb SR1noZ SR0Z SR1Z	≥4 =3 ≥4 =3	≥0 ≥1 ≥0 ≥1	extended veto extended veto request request		or >600 or >400	RPV RPV p GGM GGM	$ ilde{\chi}^0_3$
Sample			SR0noZa	SR0noZb	SR1noZ	SR0Z	SR1Z
ZZ			0.6 ± 0.5	0.50 ± 0.26	0.19 ± 0.05	1.2 ± 0.4	0.49 ± 0.10
ZWW			0.12 ± 0.12	0.08 ± 0.08	0.05 ± 0.05	0.6 ± 0.6	0.13 ± 0.13
$t\bar{t}Z$			0.73 ± 0.34	0.75 ± 0.35	0.16 ± 0.12	2.3 ± 0.9	0.29 ± 0.24
Higgs			0.26 ± 0.07	0.22 ± 0.07	0.23 ± 0.06	0.58 ± 0.15	0.14 ± 0.05
Irreducible	Bkg.		1.7 ± 0.8	1.6 ± 0.6	0.62 ± 0.21	4.8 ± 1.8	1.1 ± 0.4
Reducible l	Bkg.		$0^{+0.16}_{-0}$	$0.05^{+0.14}_{-0.05}$	1.4 ± 1.3	$0^{+0.14}_{-0}$	$0.3^{+1.0}_{-0.3}$
Total Bkg.			1.7 ± 0.8	1.6 ± 0.6	2.0 ± 1.3	4.8 ± 1.8	1.3 ^{+1.0} _{-0.5}
Data			2	1	4	8	3
	IDC CIIC	V NIEE 20	12 Of: Calaina	/\A/a: lu	:	11/10/2	012

RPC

Other searches

Searches for electroweak production of long lived particles are covered in Andy Haas talk:

- Disappearing tracks: long-lived chargino
- CERN-PH-EP-2013-155 (Submitted to PRD)
- □ Long-lived slepton (stau) search-
- ATLAS-CONF-2013-058

Currents Limits on electroweakino and slepton production

Limits on $\tilde{\chi}_2^0$ $\tilde{\chi}_1^{\pm}$ from all analyses described above. For comparison, the limits on direct left handed slepton production is shown. As one can see, The limits on $\tilde{\chi}_2^0$ $\tilde{\chi}_1^{\pm}$ are stronger due to the higher cross section

Future sensitivity

Moving to 14 TeV after the shutdown with eventually higher integrated Luminosity will increase sensitivity drastically, as can be seen in the following projection.

Future sensitivity for $\tilde{\chi}_2^0 \; \tilde{\chi}_1^\pm$ production decaying through gauge bosons.

LPC-SUSY-NEF 2013 Ofir Gabizon (Weizmann Institute of Science)

11/10/2013

Conclusions

- A review of recent ATLAS results on searches for direct EW production of electroweakinos and sleptons is presented no significant excess above SM predictions is found.
- Limits on electroweakino masses when decay through sleptons are typically between $400-600\,GeV$
- Limits on electroweakino masses when decay through staus or gauge bosons are typically between $350-400\,GeV$
- Limits on electroweakino masses when decay through higgs and gauge bosons are typically 280GeV