Current Status of GMSB Searches at CMS

SUSY at the Near Energy Frontier Fermilab

Peter Thomassen Rutgers University

November 12, 2013

RUTGERS

Introduction

Recent direct GMSB searches

- SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
- SUS-13-014: Natural Higgsino NLSP (diphotons)
- SUS-13-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
- SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

Motivation

- If SUSY exists, it is broken
- What mechanism breaks it?
 - One option: Gauge-mediated SUSY breaking
 - Additional particle: goldstino = gravitino
- In many GMSB models, all sparticles eventually decay to SM particles + gravitino
- The corresponding signatures are addressed by several CMS searches
- Final state involves
 - MET from the (almost) massless gravitino
 - SM particles from sparticle decays

- In this talk, the current status of CMS GMSB searches is presented
- All recent direct searches use 2012 data from pp collisions collected by the CMS detector (8 TeV)
 - Search results are interpreted to obtain limits on GMSB models (assuming R-parity and prompt decays)
 - Further information available at <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>
- Constraints from other searches exist as well (not always interpreted in GMSB scenarios)
 - Only giving a quick overview
 - Further information available at <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>

Introduction

- Recent direct GMSB searches
 - SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
 - SUS-13-014: Natural Higgsino NLSP (diphotons)
 - SUS-I3-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
 - SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

Analysis Overview Inclusive multi-lepton search with full 2012 dataset (19.5/fb)

- one application: GMSB models
- General idea: Don't cut, but bin in event properties
 - Take advantage of the power of cuts (high S/B), but still make use of the rest of the data
- Bin in number of leptons, hadronic taus, OSSF pairs, dilepton mass, b-tags, MET, H_T (~300 signal regions in total)

Backgrounds:

SUS-13-002

- ttbar, WZ, ZZ from validated MC simulations
- Non-prompt leptons from jets data-driven
- Asymmetric photon conversions data-driven
- Rare backgrounds (ttV, Higgs, ...) are estimated from MC
- To compute limits, use most sensitive signal regions
 - They can vary from model to model and also from point to point in the model parameter space

SUS-13-002 RUTGERS Some results (complete tables in backup)

Selection		$E_{\rm T}^{\rm miss}$	$N(\tau_h)=$	=0, N _{b-jets} =0	$N(\tau_h)$	$=1, N_{b-jets}=0$	$N(\tau_h)=$	$0, N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results		-	obs	exp	obs	éxp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	7	11 ± 4.9	101	111 ± 54	13	10 ± 5.3	87	119 ± 61
OSSF0 $H_T < 200$	NA	(50, 100)	35	38 ± 15	406	402 ± 152	29	26 ± 13	269	298 ± 151
OSSF0 $H_T < 200$	NA	(0,50)	53	51 ± 11	910	1035 ± 255	29	23 ± 10	237	240 ± 113
OSSF1 $H_T < 200$	above-Z	(100,∞)	18	13 ± 3.5	25	38 ± 18	10	6.5 ± 2.9	24	35 ± 18
OSSF1 $H_T < 200$	below-Z	(100,∞)	21	24 ± 9	41	50 ± 25	14	20 ± 10	42	54 ± 28
OSSF1 $H_T < 200$	on-Z	(100,∞)l	150	152 ± 26	39	48 ± 13	15	14 ± 4.8	19	23 ± 11
OSSF1 $H_T < 200$	above-Z	(50, 100)	50	46 ± 9.7	169	139 ± 48	20	18 ± 8	85	93 ± 47
OSSF1 $H_T < 200$	below-Z	(50, 100)	142	125 ± 27	353	355 ± 92	48	48 ± 23	140	133 ± 68
OSSF1 $H_T < 200$	on-Z	(50, 100)	*773	777 ± 116	1276	1154 ± 306	56	47 ± 13	81	75 ± 32
OSSF1 $H_T < 200$	above-Z	(0,50)	178	196 ± 35	1676	1882 ± 540	17	18 ± 6.7	115	94 ± 42
OSSF1 $H_T < 200$	below-Z	(0,50)	510	547 ± 87	9939	8980 ± 2660	34	42 ± 11	226	228 ± 63
OSSF1 $H_T < 200$	on-Z	(0,50)	*3869	4105 ± 666	*50188	50162 ± 14984	*148	156 ± 24	906	925 ± 263

Peter Thomassen, Rutgers University

November 12, 2013

SUS-13-002 RUTGERS Interpretation: GMSB slepton co-NLSP

Interpretation: stau-(N)NLSP $\sqrt{s} = 8 \text{ TeV}, L dt = 19.5 \text{ fb}^{-1}$ **CMS** Preliminary $m_{\tilde{\tau}}$ (GeV) 450 400 350 300 250 Stau-(N)NLSP (GMSB) observed 95% CLs Limits 200 Theory uncertainty (NLO) expected 95% CLs Limits 150È expected $\pm 1\sigma_{experimental}$ expected $\pm 2\sigma_{experimental}$ expected -3 or experimental 100E **50**E 250 50 100 150 200 300 350 400 450 $m_{\tilde{e}} = m_{\tilde{u}}$ (GeV)

SUS-13-002

- Direct slepton production
- Produces up to 6 leptons
- Discrepancy is driven by 4L incl. τ_{had} , IOSSF off Z, no b-tag, H_T < 200 GeV in several MET bins
 - Details in the backup slides

SUS-13-002 R Interpretation: Natural Higgsino NLSP

Production of charginos and neutralinos (higgsinos) either directly or through stop decays

- Both strong and weak production
- Higgsinos nearly degenerate
- Light neutralinos decay to goldstino + Z or H
- Many variations of stop and higgsino masses possible
- Scanning Higgsino BRs as well

SUS-13-002 RUTGERS Interpretation: Natural Higgsino NLSP

- Probing the stop—higgsino mass plane
- Three example branching ratios
 - Not very sensitive in HH mode
- Overall good agreement with expectations

Introduction

- Recent direct GMSB searches
 - SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
 - SUS-13-014: Natural Higgsino NLSP (diphotons)
 - SUS-I3-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
 - SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

- Targeted at probing the Natural Higgsino NLSP model with $BR(\chi^0 \rightarrow HG) = 100\%$ where one $H \rightarrow \gamma\gamma$ using the full CMS 2012 dataset (19.5/fb)
- Search strategy:
 - Require at least two b-tags
 - Categorize events into three signal regions:
 - Exactly two b-tags with m_{bb} consistent with m_H (120–131 GeV)
 - Exactly two b-tags with m_{bb} inconsistent with m_H
 - Three or more b-tags (no mass requirement) to catch strong production

Events per bin

3

Higgs Mass Region

Data Driven Background

MC Signal: M _{Stop} =350 GeV, M _{Higgsino} =135 GeV MC Signal: M _{Stop} =400 GeV, M _{Higgsino} =300 GeV MC Signal: M _{Stop} =300 GeV, M _{Higgsino} =290 GeV

SUS-13-014 Analysis Overview

- Backgrounds:
 - QCD with γγbb or γbb + jets
 - Fit using power law function for $m_{\gamma\gamma}$ between 103 and 163 GeV (signal region excluded)
 - Other backgrounds negligible

			0					
Results					0 2	0 40 60 80 E	$E_{\rm T}^{\rm miss}$ (G	eV)
	2 b-je	ts on <i>h</i> mass	2 b-jet	s off <i>h</i> mass		3+ b-jet		Total
$E_{\rm T}^{\rm miss}$ (GeV)	Data	Bkg	Data	Bkg	Data	Bkg	Data	Bkg
0-20	3	5.0 ± 1.3	15	11.0 ± 1.8	2	1.77 ± 0.73	20	18.1 ± 2.3
20-30	2	3.4 ± 1.3	4	7.9 ± 1.7	1	1.8 ± 1.1	7	13.1 ± 2.0
30-40	0	1.39 ± 0.71	5	6.3 ± 1.3	1	0.73 ± 0.84	6	8.7 ± 2.0
40-60	1	0.58 ± 0.68	7	2.2 ± 1.7	2	0.73 ± 0.84	10	3.8 ± 1.6
60+	1	0.19 ± 0.28	2	1.35 ± 0.73	0	1.3 ± 1.0	3	2.8 ± 1.0

Overall, observation agrees with background expectations

CMS Preliminary, $\sqrt{s} = 8$ TeV, L dt = 19.5 fb⁻¹

SUS-13-014 Ru Interpretation: Natural Higgsino NLSP

- Same topology as in SUS-13-002
- Diphotons give more powerful exclusion than multileptons
- Observed limit between 360 and 410 GeV on stop mass

GERS

Introduction

- Recent direct GMSB searches
 - SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
 - SUS-13-014: Natural Higgsino NLSP (diphotons)
 - ► SUS-13-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
 - SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

SUS-13-006 Analysis Overview

- Targeting electroweak production of charginos, neutralinos, and sleptons using the full 2012 CMS dataset (19.5/fb)
- Final states relevant for GMSB model $(\chi^0\chi^0 \rightarrow ZZ+GG)$:
 - Exactly 3 leptons
 - Exactly 4 leptons
 - OSSF dileptons + 2 jets
- Backgrounds:
 - WZ and ZZ from Monte Carlo simulation
 - Fakes from jets using data-driven techniques
- More details and results is Lesya Shchutska's talk on electroweak SUSY searches

Direct neutralino production

• Neutralinos and charginos nearly degenerate; $m_{\chi} \approx \mu$

- Produces 2, 3 or 4 leptons depending on Z decay mode
- Exclusion up to 330 GeV in agreement with expectation

Introduction

Recent direct GMSB searches

- SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
- SUS-13-014: Natural Higgsino NLSP (diphotons)
- SUS-I3-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
- SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

Aims at a general GMSB model using 4.04/fb of CMS 2012 data

 Strong pair production of sparticles decaying to neutralinos / charginos (NLSPs)

Signal regions:

- If the neutralino is bino-like, it decays predominantly to a photon and the gravitino LSP
 - Two photons in the final state + MET from the gravitinos
- If the neutralino is wino-like, the photonic decay is suppressed by the preference for decays to Z + gravitino (chargino:W + gravitino)
 - Single photon + MET and additional jets in the final state

Dominant Backgrounds:

- Mismeasured MET in QCD (direct diphoton, photon + jets, ...)
- Events with true MET from $\gamma + W \rightarrow \gamma e v$ with misidentified electron

Diphoton analysis

100

150

200

• Selection: \geq 2 photons with E_T > 40 (25) GeV, MET > 50 GeV, I jet

500

500

Excluded

1000

Neutralino at 375 GeV, other sparticles decoupled

250

E^{miss} [GeV]

Exclusion below m_{squark} = 1200 GeV and m_{gluino} = 1100 GeV in agreement with expectation

2000 m_q (GeV/c²)

1500

Data/Prediction

1.6

- Single photon analysis
 - Selection: $E_T > 80$ GeV, MET > 100 GeV, 2 jets, $H_T > 450$ GeV
 - Neutralino at 375 GeV, other sparticles decoupled
 - Exclusion below m_{squark} = 850 GeV and m_{gluino} = 750 GeV in agreement with expectation

GERS

Introduction

Recent direct GMSB searches

- SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
- SUS-13-014: Natural Higgsino NLSP (diphotons)
- SUS-I3-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
- SUS-12-018: Photons with MET
- Other GMSB searches
- Conclusions

Other GMSB searches SUS-12-014: Stealth SUSY

Stealth SUSY search with 4.96/fb at 7 TeV

- nearly degenerate stealth superpartners so that the gravitino is very soft
- ▶ m_{gluino} = 1500 GeV
- ▶ Require 2 photons and ≥ 4 jets
- Excluding squark masses below 1430 GeV

Peter Thomassen, Rutgers University

Other GMSB searches EXO-12-026: HSCP stau GMSB

- Search for heavy stable charged particles, interpreted in terms of a GMSB scenario with 5.0/fb at 7 TeV and 18.8/fb at 8 TeV
 - Assuming detector-stable stau
 - Require tracks that are reconstructed in the tracker and in the muon system
 - Apply cuts on I/β and ionization discriminators
- Probing stau masses up to 500 (339) GeV for direct+indirect (direct only) production
 - in agreement with expectations

- Some exotic searches place constraints on GMSB
 - EXO-12-038
 - Search for displaced dijets; strongly constrains many models with long-lived particles including GMSB
 - EXO-11-067
 - Search for displaced photon + MET (using conversion pointing)
 - EXO-11-035
 - Search for displaced photon + MET (using photon timing)
- More information in the backup and at <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>

Introduction

Recent direct GMSB searches

- SUS-13-002: co-NLSP, stau-NLSP, Natural Higgsino NLSP
- SUS-13-014: Natural Higgsino NLSP (diphotons)
- SUS-I3-006: $\chi^0\chi^0 \rightarrow ZZ+GG$ ("TChiZZ")
- SUS-12-018: Photons with MET
- Other GMSB searches

Conclusions

Conclusion

- Many interesting GMSB searches in CMS
- Observations mostly in agreement with expectations
 - The results are interpreted in several GMSB scenarios to set limits on the model parameters

Highlights:

- Multi-lepton search with high sensitivity to a variety of models
- Photon searches complement the leptonic searches
- Photons also sensitive to wino-ness of the NLSP
- Further constraints from stealth and exotic searches

Looking forward to extended experimental reach in 2015

Extra Slides

Peter Thomassen, Rutgers University

SUS-13-002 3-lepton results

Selection		$E_{\rm T}^{\rm miss}$	N(τ_h)=0, N _{b-jets} =0		N(τ_h)=1, N _{b-jets} =0		N(τ_h)=0, N _{b-jets} ≥ 1		$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	5	3.7 ± 1.6	35	33 ± 14	1	5.5 ± 2.2	47	61 ± 30
OSSF0 $H_T > 200$	NA	(50, 100)	3	3.5 ± 1.4	34	36 ± 16	8	7.7 ± 2.7	82	91 ± 46
OSSF0 $H_T > 200$	NA	(0,50)	4	2.1 ± 0.8	25	25 ± 9.7	1	3.6 ± 1.5	52	59 ± 29
OSSF1 $H_T > 200$	above-Z	(100,∞)	5	3.6 ± 1.2	2	10 ± 4.8	3	4.7 ± 1.6	19	22 ± 11
OSSF1 $H_T > 200$	below-Z	(100,∞)	7	9.7 ± 3.3	18	14 ± 6.4	8	9.1 ± 3.4	21	23 ± 11
OSSF1 $H_T > 200$	on-Z	(100,∞)	39	61 ± 23	17	15 ± 4.9	9	14 ± 4.4	10	12 ± 5.8
OSSF1 $H_T > 200$	above-Z	(50, 100)	4	5 ± 1.6	14	11 ± 5.2	6	6.8 ± 2.4	32	30 ± 15
OSSF1 $H_T > 200$	below-Z	(50, 100)	10	11 ± 3.8	24	19 ± 6.4	10	9.9 ± 3.7	25	32 ± 16
OSSF1 $H_T > 200$	on-Z	(50,100)	78	80 ± 32	70	50 ± 11	22	22 ± 6.3	36	24 ± 9.8
OSSF1 $H_T > 200$	above-Z	(0,50)	3	7.3 ± 2	41	33 ± 8.7	4	5.3 ± 1.5	15	23 ± 11
OSSF1 $H_T > 200$	below-Z	(0,50)	26	25 ± 6.8	110	86 ± 23	5	10 ± 2.5	24	26 ± 11
OSSF1 $H_T > 200$	on-Z	(0,50)	*135	127 ± 41	542	543 ± 159	31	32 ± 6.5	86	75 ± 19

Selection		$E_{\rm T}^{\rm miss}$	N(τ_h)=0, N _{b-jets} =0		N(τ_h)=1, N _{b-jets} =0		N(τ_h)=0, N _{b-jets} ≥ 1		N(τ_h)=1, N _{b-jets} ≥ 1	
3 Lepton Results		-	obs	exp	obs	éxp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	7	11 ± 4.9	101	111 ± 54	13	10 ± 5.3	87	119 ± 61
OSSF0 $H_T < 200$	NA	(50, 100)	35	38 ± 15	406	402 ± 152	29	26 ± 13	269	298 ± 151
OSSF0 $H_T < 200$	NA	(0,50)	53	51 ± 11	910	1035 ± 255	29	23 ± 10	237	240 ± 113
$OSSF1 H_T < 200$	above-Z	(100,∞)	18	13 ± 3.5	25	38 ± 18	10	6.5 ± 2.9	24	35 ± 18
$OSSF1 H_T < 200$	below-Z	(100,∞)	21	24 ± 9	41	50 ± 25	14	20 ± 10	42	54 ± 28
$OSSF1 H_T < 200$	on-Z	(100,∞)l	150	152 ± 26	39	48 ± 13	15	14 ± 4.8	19	23 ± 11
$OSSF1 H_T < 200$	above-Z	(50, 100)	50	46 ± 9.7	169	139 ± 48	20	18 ± 8	85	93 ± 47
$OSSF1 H_T < 200$	below-Z	(50, 100)	142	125 ± 27	353	355 ± 92	48	48 ± 23	140	133 ± 68
$OSSF1 H_T < 200$	on-Z	(50, 100)	*773	777 ± 116	1276	1154 ± 306	56	47 ± 13	81	75 ± 32
OSSF1 $H_T < 200$	above-Z	(0,50)	178	196 ± 35	1676	1882 ± 540	17	18 ± 6.7	115	94 ± 42
$OSSF1 H_T < 200$	below-Z	(0,50)	510	547 ± 87	9939	8980 ± 2660	34	42 ± 11	226	228 ± 63
OSSF1 $H_T < 200$	on-Z	(0,50)	*3869	4105 ± 666	*50188	50162 ± 14984	*148	156 ± 24	906	925 ± 263

SUS-13-002 4-lepton results

Calastian		rmiss	$\mathbf{N}(-)$	0 N 0	N(-)	1 N 0	NI(0 N > 1		1 N > 1
Selection		$E_{\rm T}^{\rm hubb}$	$ N(\tau_h)$	$=0, N_{b-jets}=0$	$N(\tau_h)$	=1, $N_{b-jets}=0$	$ N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$ N(\tau_h)$	$=1, N_{b-jets} \ge 1$
4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	0	0.11 ± 0.08	0	0.17 ± 0.1	0	0.03 ± 0.04	0	0.04 ± 0.04
OSSF0 $H_T < 200$	NA	(50,100)	0	0.01 ± 0.03	2	0.7 ± 0.33	0	$0.0^{+0.02}_{-0.00}$	0	0.28 ± 0.16
OSSF0 $H_T < 200$	NA	(0,50)	0	0.01 ± 0.02	1	0.7 ± 0.3	0	0.001 ± 0.02	0	0.13 ± 0.08
OSSF1 $H_T < 200$	off-Z	(100,∞)	0	0.06 ± 0.04	3	0.6 ± 0.24	0	0.02 ± 0.04	0	0.32 ± 0.2
OSSF1 $H_T < 200$	on-Z	(100,∞)	1	0.5 ± 0.18	2	2.5 ± 0.5	1	0.38 ± 0.2	0	0.21 ± 0.1
OSSF1 $H_T < 200$	off-Z	(50, 100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
OSSF1 $H_T < 200$	on-Z	(50, 100)	2	1.2 ± 0.34	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.5 ± 0.16
OSSF1 $H_T < 200$	off-Z	(0,50)	2	0.46 ± 0.18	15	7.5 ± 2	0	0.09 ± 0.06	0	0.7 ± 0.31
OSSF1 $H_T < 200$	on-Z	(0,50)	4	3 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.5 ± 0.47
OSSF2 $H_T < 200$	off-Z	(100,∞)	0	0.04 ± 0.03	-	-	0	0.05 ± 0.04	-	-
OSSF2 $H_T < 200$	on-Z	(100,∞)	0	0.34 ± 0.15	-	-	0	0.46 ± 0.25	-	-
OSSF2 $H_T < 200$	off-Z	(50, 100)	2	0.18 ± 0.13	-	-	0	0.02 ± 0.03	-	-
OSSF2 $H_T < 200$	on-Z	(50, 100)	4	3.9 ± 2.5	-	-	0	0.5 ± 0.21	-	-
OSSF2 $H_T < 200$	off-Z	(0,50)	7	8.9 ± 2.4	-	-	1	0.23 ± 0.09	-	-
OSSF2 $H_T < 200$	on-Z	(0,50)	*156	159 ± 34	-	-	4	2.9 ± 0.8	-	-
			1				I		1	
Selection		$E_{\mathrm{T}}^{\mathrm{miss}}$	$N(\tau_h)$	$=0, N_{b-jets}=0$	$N(\tau_h)$	=1, $N_{b-jets}=0$	$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$N(\tau_h)$	$=1, N_{b-jets} \ge 1$
Selection 4 Lepton Results		$E_{\mathrm{T}}^{\mathrm{miss}}$	$N(\tau_h)$ obs	=0, N _{b-jets} =0 exp	$N(\tau_h)$ obs	=1, N _{b-jets} =0 exp	$N(\tau_h)$ obs	=0, N _{b−jets} ≥1 exp	$N(\tau_h)$ obs	=1, $N_{b-jets} \ge 1$ exp
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 Lepton Results \\ \hline OSSF0 H_T > 200 \end{tabular}$	NA	$E_{\rm T}^{\rm miss}$ (100, ∞)	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \end{array}$	$N_{b-jets} = 0$ exp 0.01 ± 0.03	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \end{array} $	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \end{array}$	$\frac{1=0, N_{b-jets} \ge 1}{\exp}$	$\left \begin{array}{c} N(\tau_h) \\ obs \end{array} \right $	$\frac{1}{1} \frac{N_{b-jets} \ge 1}{exp}$
$\begin{tabular}{ c c c c }\hline Selection \\ \hline 4 Lepton Results \\\hline OSSF0 H_T > 200 \\\hline OSSF0 H_T > 200 \\\hline \hline \end{tabular}$	NA NA	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100)	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \end{array}$	$\begin{array}{c} = 0, \ N_{b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \end{array}$	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \end{array} $	$\begin{array}{c} =1, N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.06 \\ 0.01 \pm 0.06 \end{array}$	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \end{array}$	$\frac{1=0, N_{b-jets} \ge 1}{exp}$ 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \end{array} $	$(b=1, N_{b-jets} \ge 1)$ exp (0.11 ± 0.08) (0.12 ± 0.07)
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ \hline end{tabular}$	NA NA NA	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} = 0, N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e - 05 \pm 0.02 \end{array}$	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} = 0, N_{\rm b-jets} \ge 1 \\ exp \\ \hline 0.02 \pm 0.04 \\ 0.0^{+0.03}_{-0.00} \\ 0.0^{+0.02}_{-0.00} \end{array} $	$ \begin{array}{c c} N(\tau_h) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} = 1, N_{\mathrm{b-jets}} \ge 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \end{array}$
$\begin{tabular}{ c c c c }\hline Selection \\ \hline 4 \ Lepton \ Results \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF1 \ H_T > 200 \\\hline OSSF$	NA NA NA off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞)	$\begin{array}{c} \mathrm{N}(\tau_{\mathrm{h}})\\ \mathrm{obs} \end{array}$	$\begin{array}{c} = 0, N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e{-}05 \pm 0.02 \\ 0.005 \pm 0.02 \end{array}$	$\begin{array}{c c} N(\tau_{h}) \\ obs \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11	$\begin{array}{c} N(\tau_h)\\ obs \end{array}$	$ \begin{array}{c} = 0, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.02 \pm 0.04 \\ 0.0^{+0.03}_{-0.00} \\ 0.0^{+0.02}_{-0.00} \\ 0.13 \pm 0.08 \end{array} $	$\begin{array}{c c} N(\tau_h)\\ obs \end{array}$	$\begin{array}{c} = 1, N_{\mathrm{b-jets}} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \end{array}$
$\begin{tabular}{ c c c c }\hline Selection \\ \hline 4 \ Lepton \ Results \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF1 \ H_T > 200 \\\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline$	NA NA NA off-Z on-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞)	$\begin{array}{c c} N(\tau_{\rm h}) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} = 0, N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e{-}05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \end{array}$	$\begin{array}{c c} N(\tau_{\rm h}) \\ obs \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27	$\begin{array}{c c} N(\tau_{\rm h}) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} = 0, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.02 \pm 0.04 \\ 0.0^{+0.03} \\ 0.0^{+0.02} \\ 0.0 - 0.00 \\ 0.13 \pm 0.08 \\ 0.42 \pm 0.22 \end{array} $	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} = 1, N_{\mathrm{b-jets}} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \end{array}$
$\begin{tabular}{ c c c c }\hline Selection \\ \hline 4 \ Lepton Results \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF1 \ H_T > 200 \\\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\hline OSSF1 \ H_T > 200 \\\hline$	NA NA off-Z on-Z off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100)	$\begin{array}{c} N(\tau_{\rm h}) \\ obs \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array}$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e-05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \end{array}$	$\begin{array}{c c} N(\tau_{\rm h}) \\ obs \\ \hline 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13	$\begin{array}{c c} N(\tau_{h}) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} = 0, N_{b-jets} \geq 1 \\ exp \\ \hline 0.02 \pm 0.04 \\ 0.0^{+0.03}_{-0.00} \\ 0.0^{-0.00}_{-0.00} \\ 0.13 \pm 0.08 \\ 0.42 \pm 0.22 \\ 0.04 \pm 0.04 \end{array} $	$ \begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.12 \\ 0.23 \pm 0.13 \end{array}$
$\begin{tabular}{ c c c c }\hline Selection \\ \hline 4 \ Lepton \ Results \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF0 \ H_T > 200 \\\hline OSSF1 \ H_T > 200 \\\hline\hline OSSF1 \ H_T > 200 \\\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline\hline\hline\hline\hline\hline\hline\hline\\OSSF1 \ H_T > 200 \\\hline$	NA NA off-Z on-Z off-Z on-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100) (50,100)	$\begin{matrix} N(\tau_h) \\ obs \end{matrix} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{matrix}$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e-05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \end{array}$	$\begin{array}{ c c c }\hline N(\tau_h) \\ obs \\\hline 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31	$\begin{array}{c c} N(\tau_h) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ $0.0^{+0.02}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13	$\begin{array}{ c c c } N(\tau_h) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \end{array}$
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > 20$	NA NA off-Z on-Z off-Z off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100) (50,100) (0,50)	$\begin{matrix} N(\tau_h) \\ obs \end{matrix} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix}$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e-05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \end{array}$	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12	$\begin{array}{c c} N(\tau_{\rm h}) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ $0.0^{+0.02}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array}$	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \end{array}$
$\begin{tabular}{ c c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > $	NA NA off-Z off-Z off-Z off-Z off-Z on-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100) (50,100) (0,50) (0,50)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02} \\ 1e^{-0.00} \\ 1e^{-0.5} \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \\ 0.2 \pm 0.08 \end{array}$	$\begin{array}{ c c c }\hline N(\tau_h)\\ obs\\ \hline 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12 1.3 ± 0.47	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ $0.0^{+0.02}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04 0.06 ± 0.04	$\begin{array}{ c c c } N(\tau_h) \\ \hline obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \\ 0.49 \pm 0.19 \end{array}$
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > 200 \\ H_T > 200 \\ OSSF1 \ H_T > 200 \\ OSSF1 \ H_T > 200 \\ OSSF$	NA NA off-Z off-Z off-Z off-Z off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100) (50,100) (0,50) (0,50) (100, ∞)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02} \\ 0.005 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \\ 0.2 \pm 0.08 \\ 0.01 \pm 0.02 \end{array}$	$\begin{array}{ c c c }\hline N(\tau_h) \\ obs \\\hline 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ - \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12 1.3 ± 0.47	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ $0.0^{+0.02}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04 0.06 ± 0.04 0.01 ± 0.06	N(T _h) obs 0 0 0 0 0 0 0 1 0 1 -	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \\ 0.49 \pm 0.19 \\ \hline - \end{array}$
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > 200 \\ OSSF2 \ H_T > 20$	NA NA off-Z off-Z off-Z off-Z off-Z off-Z off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (100, ∞) (50,100) (50,100) (0,50) (0,50) (100, ∞) (100, ∞)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e{-}05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \\ 0.2 \pm 0.08 \\ 0.01 \pm 0.02 \\ 0.15 \pm 0.16 \end{array}$	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ - \\ - \\ - \\ \end{array}$	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12 1.3 ± 0.47	$\begin{array}{c c} N(\tau_h) \\ obs \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04 0.06 ± 0.04 0.01 ± 0.06 0.34 ± 0.18	N(T _h) obs 0 0 0 0 0 0 0 1 0 1 - -	$\begin{array}{c} = 1, \ N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \\ 0.49 \pm 0.19 \\ \hline - \\ - \\ \hline - \\ \hline \end{array}$
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > 200 \\ OSSF2 \ H_T > 20$	NA NA off-Z on-Z off-Z off-Z off-Z off-Z off-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (50,100) (50,100) (0,50) (0,50) (100, ∞) (100, ∞) (50,100)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 0, \ N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02}_{-0.00} \\ 1e-05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \\ 0.2 \pm 0.08 \\ 0.01 \pm 0.02 \\ 0.15 \pm 0.16 \\ 0.03 \pm 0.02 \end{array}$	N(τ _h) obs 0 0 0 1 0 1 0 - - -	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12 1.3 ± 0.47 $-$	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04 0.06 ± 0.04 0.01 ± 0.06 0.34 ± 0.18 0.13 ± 0.09	N(T _h) obs 0 0 0 0 0 0 0 1 0 1 - -	$\begin{array}{c} = 1, \ N_{b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \\ 0.49 \pm 0.19 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
$\begin{tabular}{ c c c c } \hline Selection \\ \hline 4 \ Lepton \ Results \\ \hline OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF0 \ H_T > 200 \\ OSSF1 \ H_T > 200 \\ OSSF2 \ H_T > 20$	NA NA off-Z on-Z off-Z off-Z off-Z off-Z off-Z off-Z off-Z on-Z	$E_{\rm T}^{\rm miss}$ (100, ∞) (50,100) (0,50) (100, ∞) (50,100) (50,100) (0,50) (0,50) (100, ∞) (100, ∞) (50,100) (50,100) (50,100)	$\begin{array}{c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} = 0, N_{\rm b-jets} = 0 \\ exp \\ \hline 0.01 \pm 0.03 \\ 0.0^{+0.02} \\ -0.00 \\ 1e - 05 \pm 0.02 \\ 0.005 \pm 0.02 \\ 0.1 \pm 0.06 \\ 0.07 \pm 0.06 \\ 0.23 \pm 0.11 \\ 0.02 \pm 0.03 \\ 0.2 \pm 0.03 \\ 0.2 \pm 0.08 \\ 0.01 \pm 0.02 \\ 0.15 \pm 0.16 \\ 0.03 \pm 0.02 \\ 0.8 \pm 0.4 \end{array}$	N(τ _h) obs 0 0 0 1 0 1 0 - - - - - - -	$=1, N_{b-jets}=0$ exp 0.01 ± 0.06 0.01 ± 0.06 0.07 ± 0.1 0.25 ± 0.11 0.5 ± 0.27 0.29 ± 0.13 0.7 ± 0.31 0.27 ± 0.12 1.3 ± 0.47	$\begin{array}{c c} N(\tau_h) \\ obs \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$=0, N_{b-jets} \ge 1$ exp 0.02 ± 0.04 $0.0^{+0.03}_{-0.00}$ 0.13 ± 0.08 0.42 ± 0.22 0.04 ± 0.04 0.23 ± 0.13 0.03 ± 0.04 0.06 ± 0.04 0.01 ± 0.06 0.34 ± 0.18 0.13 ± 0.09 0.36 ± 0.19	N(Th) obs 0 0 0 0 0 0 0 1 0 1 - - - -	$\begin{array}{c} = 1, N_{\rm b-jets} \geq 1 \\ exp \\ \hline 0.11 \pm 0.08 \\ 0.12 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.12 \pm 0.12 \\ 0.42 \pm 0.19 \\ 0.23 \pm 0.13 \\ 0.34 \pm 0.16 \\ 0.31 \pm 0.15 \\ 0.49 \pm 0.19 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$

Peter Thomassen, Rutgers University

2

 0.8 ± 0.4

 7.4 ± 3.5

(0,50)

on-Z

5

OSSF2 H_T > 200

SUS-13-002 Excess in stau-NLSP scenario

32

November 12, 2013

- Fixed higgsino mass
- Probing BRs and stop mass using three example **Higgsino** masses
- Again, no surprises

RUTGERS

EXO-12-038

- Search for displaced dijets with 18.6/fb at 8 TeV
 - Two bins in L_{xy}, the distance between the dijet track intersection and the primary vertex (below/above 20cm)
- Results:
 - > Below L_{xy} = 20 cm, 2 observed and 1.60 \pm 0.25(stat) \pm 0.51(syst) expected
 - Above $L_{xy} = 20$ cm, 1 observed and 1.14 \pm 0.15(stat) \pm 0.52(syst) expected
- Strongly constrains many models with long-lived particles including GMSB
- Background control plots below and above L_{xy} = 20 cm:

Peter Thomassen, Rutgers University

EXO-11-067

- Search for one or more displaced photons with MET using 2.23/fb at 7 TeV
 - Require at least one displaced photon
 - Use conversion pointing to determine impact parameter
- Model: neutralino at 140 GeV decaying to γ + gravitino

Peter Thomassen, Rutgers University

 \tilde{G}

EXO-11-035

36

Search for one or more displaced photons with MET using 4.9/fb at 7 TeV

Requiring at least one displaced photon and 3 or more jets

Peter Thomassen, Rutgers University

November 12, 2013