Learning how to count A high multiplicity search for the LHC

Sonia El Hedri

with

Anson Hook, Martin Jankowiak and Jay Wacker

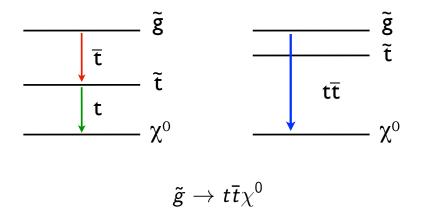
November 12, 2013

arXiv:1302.1870v1

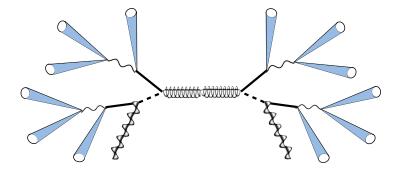
Overview

Data-driven techniques

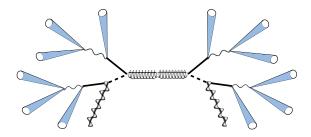
Counting subjets


Results

Handles to look at new physics signals:


- Leptons
- Heavy flavor jets (b-tagging)
- Kinematic reconstruction (m_T , MT2, ...)
- ► Boosted jets: *W* or top tagging using jet substructure
- High p_T jets, radius R = 0.4, 0.5
- Missing E_T

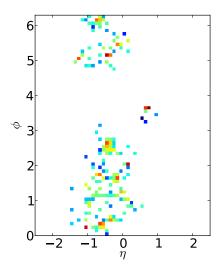
One target: natural SUSY


Decouple all particles not cancelling the top quadratic divergences

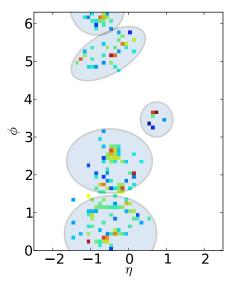
> 12 jet signals from natural SUSY

Other signals: RPV, strong dynamics, cascade decays, ...

- Dominating if the light particles are hard to see
- Low production rate
- Signatures distributed across many channels
 - Exclusive searches are low efficiency
 - Inclusive searches are high background


Traditional approaches

- Cluster thin jets, R = 0.4 0.5, $p_T > 50$ GeV
- Cut on the number of jets
- ► Cut on ∉_T


But

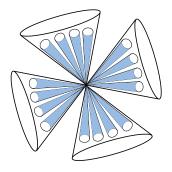
- Soft jets, $p_T \sim 50$ GeV
- ► Low ∉_T
- Discriminate hard structure from parton shower
- Complicated phase space (3^{N_j})
- High-multiplicity backgrounds hard to model

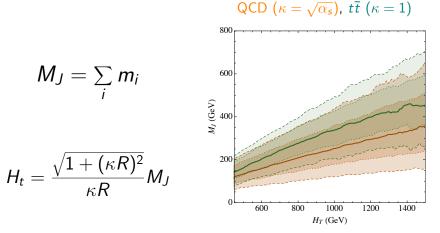
Jets hard to resolve individually ...


...or accidental boost!

Using fat jets: an organizational principle

 $> 12 \text{ low } p_T \text{ thin jets} \Rightarrow \text{four high } p_T \text{ fat jets}$

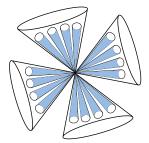

- Lower phase space dimensionality
- Four hard objects, comparable p_T
- QCD fat jets weakly correlated
 - \Rightarrow Data-driven backgrounds

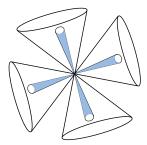

Using fat jets: an organizational principle

>12 low p_T thin jets \Rightarrow four high p_T fat jets

- Lower phase space dimensionality
- Four hard objects, comparable p_T
- QCD fat jets weakly correlated
 - \Rightarrow Data-driven backgrounds
- Find new discriminating variables
 - \Rightarrow Jet substructure techniques

New observables: Jet mass


A. Hook et. al., arXiv:1202.0558v3


New observables: subjet counting

"Count" the number of subjets using jet substructure techniques

Signal

Background

$$N = \sum_{i} N_{i}^{subjets}$$

Overview

Data-driven techniques

Counting subjets

Results

Data-driven background estimates

- From low multiplicity to high multiplicity
- Evaluate 4-jet QCD backgrounds using 2-jet samples
- Model each jet/MET using templates

$$\rho_{\rm jet}(\textit{m}_{\rm jet},\textit{n}_{\rm jet},\textit{p}_{T})$$

Combine templates, account for jet correlations

$$\sigma(p_{Ti}, M_J, N_J, \not \in_T) = \sigma_{4J}(p_{Ti}) \otimes \mathcal{P}(\not \in_T) \otimes \rho_1(m_1, n_1, p_{T1}) \otimes \dots$$

Preliminary analysis

Reduce the dimensionality – Assumptions

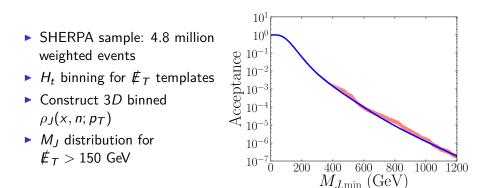
- Quark-gluon ratio similar in all jets
- Jet properties independent on the environment

$$m_i, n_i, p_{T_i} \Rightarrow \rho_J\left(\frac{m_i}{p_{T_i}}, n_i; p_{T_i}\right)$$

Jets independent from each other

• $\not\!\!\!E_T$ depends only on H_t

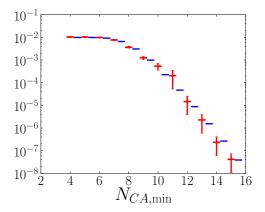
Missing E_T templates


 10^{0} 10^{-} Detector smearing effects $\mathcal{L}^{10^{-2}}_{M_{M_{10^{-3}}}}$ ▶ Scales as $\sqrt{H_t}$ 10^{-4} Orthogonal to jet 10^{-5} substructure properties 10^{-6} 2 6 0 8 $E_T/\sqrt{H_T}$ (GeV¹/₂)

$$\mathcal{P}_{MET} = \mathcal{P}\left(\frac{\not\!\!\!E_T}{\sqrt{H_t}}, H_t\right)$$

10

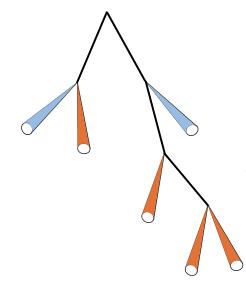
Results


Preliminary: find $\rho_J(x, n; p_T)$ using 4-jet Monte-Carlo samples

Results

Preliminary: find $\rho_J(x, n; p_T)$ using 4-jet Monte-Carlo samples

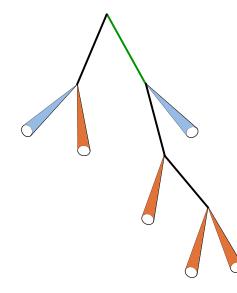
- SHERPA sample: 4.8 million weighted events
- H_t binning for $\not \in_T$ templates
- Construct 3D binned
 ρ_J(x, n; p_T)


- Good agreement between reconstructed and real distributions
- Need more statistics/data
- Take quark-gluon content into account
- ▶ Dependance of *ρ* to the environment ⇒ Less than 10%
- Take jet correlations into account, pile up effects
- ▶ Test data-driven methods on other topologies (γ +jets, etc...)
- More elaborated analysis: T. Cohen, M. Lisanti, T. Lou

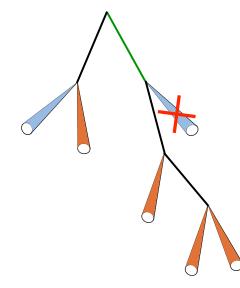
Overview

Data-driven techniques

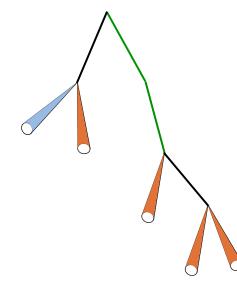
Counting subjets


Results

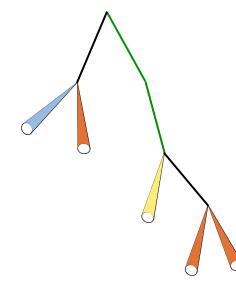
$$d_{ij} = \Delta R_{ij}^2 \tag{1}$$


Cluster the jet with CA and go down the clustering tree

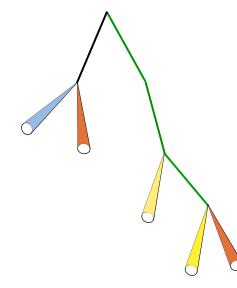
Uncluster j into j₁ and j₂


$$d_{ij} = \Delta R_{ij}^2 \tag{2}$$

- Uncluster j into j_1 and j_2
- If p_Ts are imbalanced, remove soft jet


$$d_{ij} = \Delta R_{ij}^2 \tag{3}$$

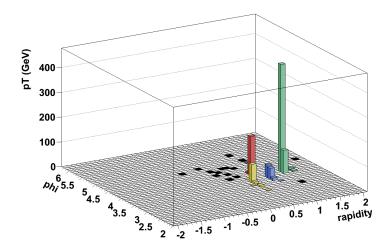
- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet


$$d_{ij} = \Delta R_{ij}^2 \tag{4}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- ▶ If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet

$$d_{ij} = \Delta R_{ij}^2 \tag{5}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet



$$d_{ij} = \Delta R_{ij}^2 \tag{6}$$

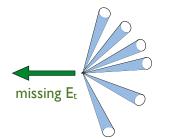
- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- ▶ If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet

Counting with CA

- Subjets consistent with the decay of a massive particle
- Soft radiation discarded
- $m_{cut} = 30$ GeV, $y_{cut} = 0.10$, $R_{min} = 0.15$, $p_{Tcut} = 30$ GeV

fastjet.hepforge.org/trac/browser/contrib/ contribs#SubjetCounting

Overview


Data-driven techniques

Counting subjets

Results Existing searches Exclusion bounds

ATLAS high multiplicity search

ATLAS-CONF-2012-103

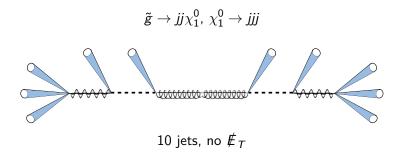
- ▶ 8 TeV, 5.8 fb⁻¹
- Anti- k_t algorithm with R = 0.4
- ▶ 7, 8 or 9 jets with $p_T > 55$ GeV
- 6, 7 or 8 jets with $p_T > 80$ GeV

Benchmark models

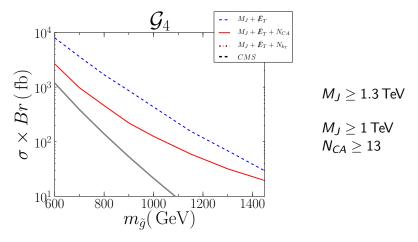
Tops jets?Cascade decay?RPV? \rightarrow $t\bar{t}\chi_i^0$ $\chi_i^0 \rightarrow VV\chi_1^0$ $\chi_1^0 \rightarrow jjj$ +12 jets+8 jets+6 jets

- 8 possible topologies
- from 4 to 26 jets

Benchmark models and searches

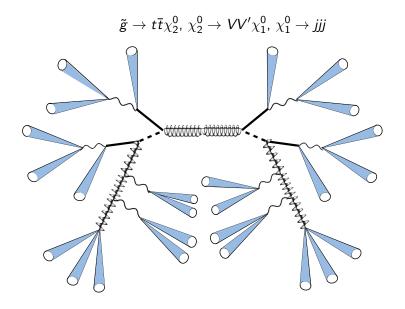

Optimal cuts depend on :

- Jet multiplicity
- ► ∉_T
- Presence of leptons
- Mass of the initial particle m_{g̃}

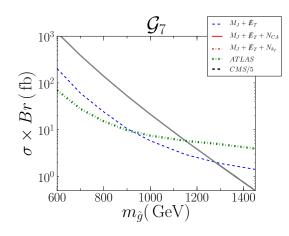

Inclusive search:

- Leptons clustered in jets (no lepton cuts)
- ► Find minimal number of cuts on M_J + ∉_T + ... so that the bounds are close to optimal
 - For each signal
 - For each mass

Gluino decay to light quarks, RPV

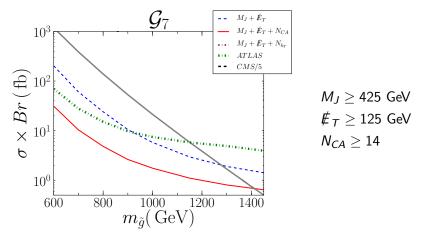


Gluino decay to light quarks, RPV – 8 TeV, $30 \, {\rm fb}^{-1}$



- ► Factor of 2 to 4 improvement over $M_J + \not \in_T$
- *M_J* cut loosened

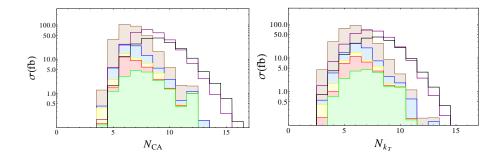
Gluino 2 step decay, RPV



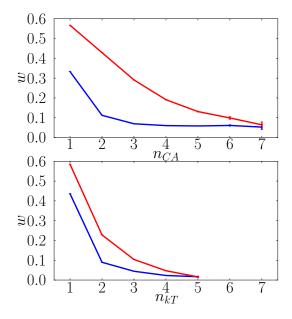
Gluino 2 step decay, RPV – 8 TeV, 30 fb $^{-1}$

M_J + ∉_T search better at high mass

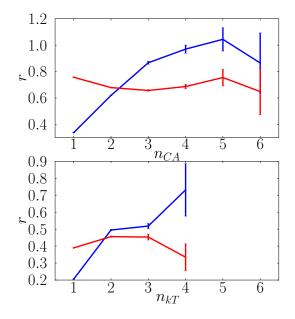
Gluino 2 step decay, RPV – 8 TeV, 30 fb $^{-1}$

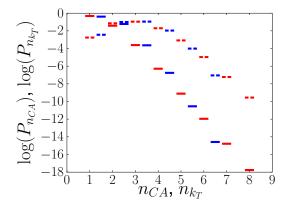

- Factor of \sim 4 improvement over M_J + MET
- \blacktriangleright Factor of ~ 5 improvement over ATLAS at high mass
- M_J and $\not\in_T$ cuts significantly looser

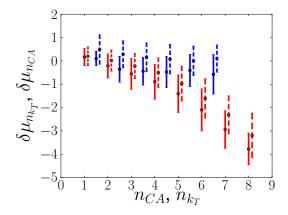
Summary

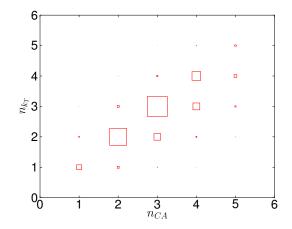

- Common new physics scenarios predict events with very high multiplicity
- Standard handles not appropriate (not boosted, complicated kinematics, low energy)
- QCD high multiplicity backgrounds hard to model
- Fat jet techniques: new organizational principle, but requires finding new variables
- Lower dimensionality makes data-driven estimates of QCD background easier
- Counting subjets in an event provides good discriminating power
- ► M_J and ∉_T cuts loosened, could be used to probe ∉_T-less signals

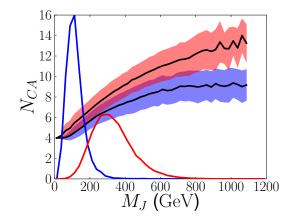
Backup

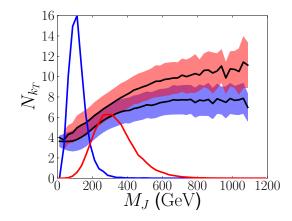

Signal and background distributions


Scaling patterns


Scaling patterns


Correlations between N_{CA} and N_{k_T}


Correlations between N_{CA} and N_{k_T}


Correlations between N_{CA} and N_{k_T}

N_{CA} vs M_J

N_{CA} vs M_J

