John Hogan – Jefferson Lab Assistant Project Manager – 12 GeV Upgrade

#### **Project X Cost Reduction Workshop**

11-12 September 2013

Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade





Thomas Jefferson National Accelerator Facility



Page 1 Project X Cost Reduction Workshop 11-12 September 2013

### **Outline**

Introduction / Scope

#### Design

- Overview & Parameters
- Procurement
  - Planning
  - Execution
  - Lessons Learned

#### Production

- Facilities & Planning
- Execution
- Acceptance Testing
- Lessons Learned

#### Installation / Check out & Commissioning

- Planning
- Execution
- Performance
- Lessons Learned

#### Cost & Schedule

Lessons Learned

#### • Summary



Thomas Jefferson National Accelerator Facility



Page 2 Project X Cost Reduction Workshop 11-12 September 2013

<image>

## **Introduction to Jefferson Lab**

>1200 active member international user community engaged in exploring quark-gluon structure of matter

Superconducting electron accelerator provides 100% duty factor beams of unprecedented quality, with high polarization at energies up to 6 GeV



Test Lab (SRF) Renovation and Technology & Engineering Development Facility Complete





Thomas Jefferson National Accelerator Facility



#### **Newport News, VA**





Page 3 Project X Cost Reduction Workshop 11-12 September 2013



## **SCOPE OF 12 GeV UPGRADE**

| Parameter                      | Present JLab         | Upgraded JLab                                   |
|--------------------------------|----------------------|-------------------------------------------------|
| Number of Halls                | 3                    | 4                                               |
| Number of passes Halls A/B/C   | 5 (for max energy)   | 5 (for max energy)                              |
| Max Energy to Halls A/B/C      | up to ~6 GeV         | up to ~11 GeV                                   |
| Number of passes to Hall D     | New Hall             | 5.5                                             |
| Energy to Hall D               | New Hall             | 12 GeV                                          |
| Current – Hall A & C           | max ~180 µA combined | max ~85 μA combined<br>(higher at lower energy) |
| Current – Hall B & D           | (B) Up to 5 μA max   | (B, D) Up to ~5 μA max<br>each                  |
| Central Helium Liquefier (CHL) | 4.5 kW               | 9 kW                                            |
| # of cryomodules in LINACS     | 40                   | 50                                              |
| Accelerator energy per pass    | 1.2 GeV              | 2.2 GeV                                         |

Routinely provide beam polarization of ~85% now, same in 12 GeV era



Thomas Jefferson National Accelerator Facility



Page 5 Project X Cost Reduction Workshop 11-12 September 2013

# **C100 Cryomodule Design**



- Eight-seven cell SRF cavities (2K nominal operating temp)
- Eight individual helium vessels (stainless steel)
- Waveguide power couplers (double warm rf-windows)
- Cavity tuners
  - Cold scissor jack
  - Warm drive components
- Supply/Return cryogenic end-caps (two cooling circuits)
  - 2K primary & 50K shield

Office of Nuclear Ph

omas Jefferson National Accelerator Facility



**Cryomodule Scope & Key Technical Parameters** 

 Scope: Develop, Design, Fabricate, Install and Check-out 10 Cryomodules (5 new cryomodules per linac)

| (Note: The following parameters are for e | ach Cryomodule)                  |  |
|-------------------------------------------|----------------------------------|--|
| Voltage (Includes 10% reserve):           | ≥ 108 MV                         |  |
|                                           | (ensemble average in each linac) |  |
| Heat budget: (Interface with Cryogen      | nics)                            |  |
| – 2 K                                     | ≤ <b>300 W</b>                   |  |
| – <b>50 K</b>                             | ≤ <b>300 W</b>                   |  |
| Slot Length:                              | 9.8 m                            |  |
| Tuner resolution:                         | ≤ <b>2 Hz</b>                    |  |
| Fundamental Power Coupler (FPC):          | 7.5/13 kW (Avg/Pk)               |  |
| Higher Order Mode (HOM) damping:          |                                  |  |
| <ul> <li>Transverse (R/Q)Qk</li> </ul>    | < 2.4 x 10 <sup>10</sup> Ω/m     |  |
| <ul> <li>Longitudinal (R/Q)Q</li> </ul>   | < 6.5 x 10 <sup>11</sup> Ω       |  |
| Cryomodule Length (Physical)              | ~8.5m                            |  |



**Jefferson National Accelerator Facility** 

Page 7



## **Procurement - Planning**

- Industry to produce components (build to print)
  - Develop advanced procurement plan
  - Specifications, drawings, acceptance criteria, schedule
  - Bid/Award process
    - Stock components
    - Low price technically acceptable
    - **Best Value (consideration for experience)**
  - Acceptance criterion
  - Delivery schedule
  - Production Schedule



**Jefferson National Accelerator Facility** 



### **Procurement - Execution**

- Acceptance Criterion
  - Must be detailed & defined prior to award
  - Visits to vendor during production critical
  - First article (FA) delivery schedule (very beneficial)
- Release for use in production











Thomas Jefferson National Accelerator Facility



Page 9 Project X Cost Reduction Workshop 11-12 September 2013

## **Procurement – Lessons Learned**

### Quality Assurance

- Get early start on 'non-standard' components
  - Specifications & acceptance criteria must be well documented
    - Acceptance travelers, staff training, feedback to vendor
  - Issues with vendor performance must be communicated promptly
- Management of resources is critical
  - Resources must be in place prior to delivery of FA
  - Staffing: Availability, allocation, training, skill sets, etc.
  - Facilities: Process control, priority access, maintenance
- Documentation
  - All procedures must be vetted prior to release
  - Establish robust QC; traveler system (receiving inspections, process control, testing results, database management)







# **Production – Facilities & Planning**

### Pre-production

- Inventory management
  - Logistics:
    - Space, access, equipment, staffing
- Scheduled mockup activities
  - Exercise tooling (ensure fit & function)
  - Work through assembly procedures
  - Identify/resolve any • interference issues
  - Opportunity to vet assembly travelers





Thomas Jefferson National Accelerator Facility









## **Production – Execution**

### Production

- Cavity qualification
  - Cavities qualified in VTA
- Cavity string assembly
  - Assembly in cleanroom
- Cold mass assembly
  - Mag shielding, Headers, tuners, instrumentation, MLI
- Space frame assembly
  - Alignment, Thermal & Mag shielding, MLI





Thomas Jefferson National Accelerator Facility
Page 12 Project X Cost Reduction Workshop 11-12 September 2013



## **Production – Acceptance Testing**

### Production

- Final assembly
  - Complete warm checkout of all subsystems.
- Acceptance testing
  - Completed cryomodule cooled down to 2K
    - Instrumentation checkout
  - Low power measurements
    - Tuner operation, cavity frequencies, HOM damping, heater control
  - High power measurements
    - Emax, Qo, Heat loads, Lorentz







- JSA Pa

**Thomas Jefferson National Accelerator Facility** 



Page 13 Project X Cost Reduction Workshop 11-12 September 2013

## **Production – Lessons Learned**

### Production Issues

- Carbon steel in He vessel
  - Spuncast head manufacturer added carbon steel to process
    - Manufacturer contacted; new (C-free) process implemented
    - Replacement heads manufactured from bulk 316 SS
- Cryogenic electrical feed-through(F-T's) leaks
  - Failed after QA acceptance testing
    - Replaced: Based on previous experience, F-T's located behind access panels.
- Microphonic response higher than planned
  - Cold tuner modified to add stiffness to system.
- Individual cavity heater control needed for operations
  - LLrf controls modified to accommodate
    - Based on previous experience, individual heaters installed





omas Jefferson National Accelerator Facility



### Installation / Checkout & Commissioning - Planning

- Coordination with other 12 GeV upgrade activities
  - Civil, beam transport, cryogenics, high power-rf, instrumentation, controls & safety
    - Integrate detailed schedule of activities including resources and interdependencies
- Goal Install two cryomodules into CEBAF ahead of baseline schedule
  - Opportunity to operate cryomodules with beam and demonstrate performance goals.
    - Close coordination with physics program to integrate new digital Ilrf control system designed for C100 cryomodules.





### Installation / Checkout & Commissioning - Execution



- Following acceptance testing
  - Cryomodule transported from Test Lab to CEBAF tunnel
  - Installation into designated zone
    - Complete integration with all other accelerator systems
      - Beamline, cryogenics, high-power-rf & control systems





#### Installation / Checkout & Commissioning - Performance

### Full Performance of C100 & RF Demonstrated







### Installation / Checkout & Commissioning - Performance

- -98MV average/CM
  - Required for 12 GeV operations
- 108MV/CM design goal
  - Provide operational margin

| Tunnel Performance (MV) |             |  |
|-------------------------|-------------|--|
| C100-01                 | 104         |  |
| C100-02                 | 110         |  |
| C100-03                 | 118         |  |
| C100-04                 | 105         |  |
| C100-05                 | 109         |  |
| C100-06                 | 108         |  |
| C100-07                 | 108         |  |
| C100-08                 | In progress |  |
| C100-09                 | 114         |  |
| C100-10                 | In progress |  |



Page 18 Project X Cost Reduction Workshop 11-12 September 2013

omas Jefferson National Accelerator Facility



- Baseline design performance goal achieved
- Design goal of 10% margin not achieved on all cryomodules
  - These activities are still in progress
    - Preliminary lessons learned
      - Prototyping systems ahead of production will reduce project cost risk
      - Improvements made to process/configuration control
      - Upgrades to testing hardware & software beneficial
      - Review field emission & process control





# **Cost & Schedule – Planning**

| Basis of Estimate (BOE) Categories              |             |  |  |
|-------------------------------------------------|-------------|--|--|
| Quotes from vendors                             | Risk factor |  |  |
| Catalog prices                                  | Risk factor |  |  |
| Estimates from vendors/consultants              | Risk factor |  |  |
| Previous JLab experience                        | Risk factor |  |  |
| Information from other labs, universities, etc. | Risk factor |  |  |
| Engineering judgment                            | Risk factor |  |  |

### Basis of Estimate

- JLab was able to benefit from previous experience
  - Infrastructure and staffing in place
  - 20+ years design, production and operational experience





## **Cost & Schedule – Monitoring & Control**



#### • EVMS

- Formal EVMS implemented for 12 GeV project in accordance with DOE Order 413.3B



Thomas Jefferson National Accelerator Facility



# **Cost & Schedule – Monitoring & Control**



#### • EVMS data

- Procurements were the dominate cost for the C100 CM's
- Labor costs dominated by QA, cavity processing & cryomodule assembly





## Cost & Schedule – Monitoring & Control

- EVMS 'Touch labor'
  - Quality Control
    - Component receiving inspections
      - Several hundred individual component inspections
    - Documentation (travelers, database management, etc.)
    - Inventory control
      - 1000's of parts inventoried, tracked & released for production
  - Cavity QA & qualification
    - Cavity receiving inspection, chemical cleaning, testing and assembly
  - Cryomodule assembly
    - Cold mass, space frame & final assembly



omas Jefferson National Accelerator Facility



## **Cost & Schedule – Lessons Learned**

### • Cost

### - Procurement

- Work with vendors to identify cost drivers and minimize NRE & schedule delays
- Take advantage of quantity discounts were possible
- Minimize custom components/maximize common parts

### – Labor

- QA: Develop capable vendors prior to request for quotes
- Processing & Assembly:
  - Automate processes and redundancy
  - Minimize touch labor

### Schedule

- Good communication critical
  - With vendors, safety, facility and technical and PM staff



Thomas Jefferson National Accelerator Facility

Page 24 Project X Cost Reduction Workshop 11-12 September 2013



# Summary

- Planning
  - Prototyping
    - **Develop/finalize component specifications & acceptance** criteria
    - Identify/resolve any potential performance issues
    - Thoroughly vet processes, procedures, tooling and staffing needs
    - **Develop sound basis for full production planning**
- Execution, Monitoring and Controlling
  - Utilize formal EVMS
    - Establish baseline, monitor progress & promptly identify cost issues
  - Work the plan
    - Communicate progress to all stakeholders on a regular basis





Thomas Jefferson National Accelerator Facility

