

Status of Low-β FOFO Snake for Final Stage of 6D Ionization Cooling

Y. Alexahin (FNAL APC)

- This work is a continuation of effort reported at MCDW'09 (BNL) and NFMCC'10 (Miss. Univ.) and resumed now after a 3 year hiatus
- Is it worthwhile?

Motivation

FOFO snake with phase advance >180°/cell has a number of attractive features:

- Apparent technological simplicity (RF between solenoids, not inside)
- Potentially higher compactness: phase advance / absorber (π +) is somewhat smaller than in RFOFO ($3\pi/2$ -)
- However, phase advance / period $(2\pi+)$ is higher creating problems with beam dynamics.

- ◆ Dispersion = 0 at focal points ⇒ stronger transverse field is required
- Large difference in cooling rates of the two transverse normal modes
- Momentum acceptance limited from above by sign change in the slippage factor
- Momentum acceptance limited from below by fast increase in the ionization loss rate

The major mechanism of losses is diffusion over the maximum of long. "kinetic energy" – change of the slip factor sign at higher values of momentum.

 $\lambda = L(\delta_p)/L(0)$ – relative length of the periodic orbit

 \blacklozenge Maximum β_{\perp} is reached between solenoids where the field nonlinearity is also at maximum:

$$\frac{\partial^3}{\partial r^3} B_r \sim \frac{\partial^3}{\partial z^3} B_z$$

This creates difficulties with the transverse acceptance as well

Total length of 2-cell period 2 × 38cm = 76cm

Bz_axis=11.5T (Bz_coil=17.3T, $j < 200A/mm^2$) for p₀=100MeV/c, constant By=0.01T

The transverse modes cooling rates can be equalized by 1-periodic **quadrupole** field with gradient **1.1T/m** between the solenoids (proposed by R.Palmer difference in solenoids also works but makes transition worse).

Normal mode tunes (including cooling rates) and normalized equilibrium emittances:

tune*	1.229 + 0.00149 i	1.245 + 0.00144 i	0.109 +0.00042 i
ε _N (mm)	0.183	0.201	1.03

*) Transverse phase advance / period is (almost) 2.5π

G4BL Tracking

Evolution of the initial Gaussian distribution truncated at 3sigma (blue dots) over 100 periods (76m) - red dots

Normalized emittances (Gaussian fit) and intensity over 100 periods .

Final ε_{\perp} =0.21mm, total losses (with decay) = 40%.

Low-beta FOFO snake – Y.Alexahin,

MAP mini-workshop, Fermilab, 09/18/2013

R. Palmer's 6D quality factor

 $Q_{6D} = \frac{d \log \varepsilon_{6D}}{d \log N}$

Average value $Q_{6D} \approx 3$

I tried to improve transmission by:

- Larger wedge angle (25°) opposite result (!?)
- Changing tunes: ~ constant for 1.2<Q $_{\perp}$ <1.25, big drop for Q $_{\perp}$ <1.2 (Q $_{\perp}$ -2Q $_{s}$ SBR?) and Q $_{\perp}$ \approx 1.375
- Rotation of LiH wedges to utilize both $D_{y'}$ and D_{x} no effect
- Lower momentum (90MeV/c) no effect (this is actually good!)
- Deceleration from 100 to 90MeV/c over 50 periods opposite result
- Higher RF frequency (650MHz) and higher voltage (20MV/m) opposite result (Q_{\perp} -2 Q_{s} SBR?)
- Lower RF frequency (325MHz) and triangular pulse equivalent to 150MHz (this should also reduce space-charge effects)

325 MHz RF

Normalized emittances (Gaussian fit), intensity and 6D quality factor over 150 periods (114m).

Final ε_{\perp} =0.17mm, total losses (with decay) = 60%.

bunch length increase is smaller than expected

• Low-beta FOFO-snake with LiH wedges does work allowing for normalized transverse emittance < 0.2mm

• Equalization of the transverse normal mode cooling rates can be achieved with either the solenoid current difference or a weak periodic quadrupole field (<2T/m)

• The major performance limitation is imposed by insufficient momentum acceptance

• There are still some possibilities to explore in order to improve transmission – may take a week more to exhaust them

325 MHz Helical FOFO Snake for Initial Stage of 6D Ionization Cooling

Y. Alexahin (FNAL APC)

MAP vacuum RF cooling mini-workshop, FNAL, September 18-19 2013

Basic Idea

• The idea: create rotating B_{\perp} field by periodically tilting solenoids, e.g. with 6-solenoid period.

• Periodic orbits for μ + and μ - look exactly the same, just shifted by a half period (3 solenoids).

• With tune $Q_{\perp}>1$ (per period) $\mathbf{r}\cdot\mathbf{D}>0$ \Rightarrow muons with higher momentum make a longer path \Rightarrow longitudinal cooling achieved even with planar absorbers

Periodic orbit for p=200MeV/c

July 22, 2009

Optics Functions

Total length of 6-cell period = 372cm vs 612cm @200MHz – I tried to reduce β_{\perp} as much as reasonably possible

Bz_axis=3.8T (j < 200A/mm²) for $p_0=200$ MeV/c, solenoid pitch angle 5mrad

The transverse modes cooling rates are equalized by costant **quadrupole** field with gradient **0.12T/m**

Normal mode tunes (including cooling rates) and normalized equilibrium emittances:

une	1.21 + 0.0069 i	1.24 + 0.0069 i	0.16 +0.0031 i
e _n (mm)	2.47	2.39	3.48

G4BL Tracking

Initial Gaussian distribution includes all correlations up to 2nd order (including energy-transverse amplitude^2)

Horizontally beam extends over 20cm, transverse momentum exceeds p0=200MeV/c! - inevitably high losses in the beginning (next slide)

Normalized emittances (Gaussian fit) over 25 periods (93m) .

Final $\epsilon_{\!\perp} {=} 3.5 \text{mm}, \, \epsilon_{\!\mid\!\mid} \, {\sim}$ twice larger

Cooling Efficiency

Final value of Q6D exceeds 20 – cooling can be continued.

Now I should try Dave's rotator output.