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Mo$va$on	  
•  Adap$ve	  Mul$grid	  proved	  efficient	  in	  the	  Wilson/Clover	  

solver.	  	  
–  Babich	  et	  al.,	  PRL	  2010	  
–  Osborn	  et	  al.,	  PoS	  2010.	  	  

•  HMC	  involves	  repeated	  solving	  of	  the	  Dirac	  equa$on	  
–  In	  the	  ac$on	  (a	  few)	  
–  In	  the	  force	  (many)	  

•  Natural	  to	  integrate	  MG	  solver	  into	  HMC	  

•  Project	  started	  at	  Boston	  University	  late	  2012	  under	  NSF	  
grant	  
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MG	  solver	  performance	  Multigrid solver for clover fermions J. C. Osborn
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Figure 2: Total time to solution including setup versus
number of right hand sides for mixed precision (MP)
BiCGStab and multigrid at different quark masses.
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Figure 3: Speedup of multigrid solver relative to
BiCGStab versus setup time at the physical quark
mass.

faster due to the improved time per solution. The break even point becomes smaller as the quark
mass is decreased. At close to strange quark mass the crossing is at around 10 full propagators
(of 12 solves each). At the dynamical mass the crossing is at 1 full propagator and at the physical
mass it is about half a propagator (6 solves). Of course it is possible to save the vectors and even
the coarse matrix to load back in for later analysis, so for analysis projects on saved configurations,
the setup cost should not be an issue. Only for configuration generation is the setup cost an issue.
Since the main focus for the implementation is currently for analysis, the setup code has not been
fully tuned and there is still room for improvement both algorithmically and in code optimization.

One still has some freedom to choose how much time to spend in the setup procedure which
then affects the quality of the resulting solver. In figure 3 we plot the speedup for a single applica-
tion of the multigrid solver relative to BiCGStab versus the time spent in the setup (in units of the
time for a single BiCGStab solve). These results were obtained on the larger lattice at the physical
quark mass. If we spend about 6 BiCGStab solves worth of work in the setup we get a solver that
is about 20× faster than BiCGStab, which is what was used in the previous figures. If we lower the
setup cost to about 3 BiCGStab solves, then the solver speedup reduces to around 11×.

We can see how this freedom can be used to optimize the total time in figure 4. Here we
show the total solution time including setup versus number of solves for the four different setups
shown in the previous figure. These runs were again done on the larger lattice at the physical mass.
Here we see that the smallest setup time gives the best total performance up to about 4 propagators
at which point the second smallest setup becomes best. The third setup takes over at around 8
propagators and the last at around 25. Thus if the setup is not being saved for reuse at a later time,
one can optimize the setup for the particular work being done.

In figure 5 we compare the performance of the 2-level and 3-level multigrid algorithms for
both lattice sizes. For heavier masses the difference between 2 and 3 levels is small while both are
still better than BiCGStab. For lighter masses the 3 level algorithm is clearly better and is about
2.5× better at the physical quark mass. As noted earlier the increase in time seen for the 3-level
algorithm at the lightest quark masses suggests that improving the coarse level with additional work
in the setup and/or adding a fourth multigrid level may be beneficial here.

In figure 6 we show how the relative speedup of multigrid over BiCGStab varies with the re-
quested residual tolerance. These results are obtained at the physical mass. For the smaller volume
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on the fine grid only. It is evident that both Eig-CG and
MG-GCR vastly reduce the mass dependence that is seen
with CG. However, while MG-GCR demonstrates close-to-
ideal OðVÞ scaling over all three volumes, the number of
Eig-CG iterations approximately doubles from the smallest
to the intermediate volume. Table I gives the number of
outer MG-GCR solver iterations for these same results,
clearly demonstrating the close-to-ideal scaling in both
mass and volume. For both MG-GCR and Eig-CG, once
the mass parameter drops below the critical value that
corresponds to zero physical fermion mass (to the left of
the vertical line), the prototypes or eigenvectors no longer
represent the null space of the operator, and so the number
of iterations increases rapidly.

In terms of raw operation count, MG-GCR is compa-
rable to Eig-CG on the 163 # 64 lattice, and 50% more
efficient on the 243 # 64 lattice. In Fig. 2, we plot
the number of floating point operations to reach conver-
gence on the 323 # 96 lattice: compared to CG, MG-GCR

reduces the cost by a factor of 3 for heavy quark masses,
rising to a factor of 15 as the critical mass is approached.
One important issue is the cost of the algorithm setup:

the adaptive process described above of sequentially find-
ing prototypes to augment Vk is expensive, since each
prototype is found using the then-current MG solver with
k$ 1 prototypes. Noting that relaxation alone will in
practice yield a good initial guess for a prototype, we
instead adopt the following two-step process. First, we
apply 10 iterations of relaxation to each of 20 random
vectors to define an initial V. We then divide the 20
resulting prototypes into five groups of four and refine
one group at a time by removing it from V and iterating
the truncated MG method 5 times upon the prototypes in
the group before reinserting it back into V. This setup
process need only be done at the critical mass [m ¼ mcrit,
Reð!minÞ & 0], since the resulting null space representa-
tion can be used for all heavier masses; this feature is
independent of volume. The cost is equivalent to a single
CG solve at an intermediate quark mass (Fig. 2), but can be
amortized when solving against multiple source vectors
and/or with multiple masses.
Concluding remarks.—In this work, we have introduced

a new adaptive multigrid algorithm for the non-Hermitian
Wilson-Dirac operator. The main results are the near elimi-
nation of critical slowing down as the fermion mass is
taken to zero and the optimal scaling of the algorithm
with volume. These developments promise to radically
reduce the computational cost of lattice field theory calcu-
lations. Future work in this area will focus on applying our
algorithm in the context of full lattice QCD simulations
and developing these techniques for staggered and chiral
fermion discretizations of the Dirac operator.
This research was supported under DOE grants
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TABLE I. Number of iterations for the MG-GCR solver to
reach convergence (parameters given in Fig. 1).

Mass 163 # 64 243 # 64 323 # 96

$0:3980 40 40 41
$0:4005 41 41 42
$0:4030 42 42 43
$0:4055 42 43 43
$0:4080 43 44 45
$0:4105 44 46 49
$0:4130 45 49 52
$0:4155 47 54 57
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FIG. 2 (color online). Number of floating point operations
required to reach convergence for CG and MG-GCR on the V ¼
323 # 96 lattice (parameters given in Fig. 1). The horizontal
line indicates the number of floating point operations of the
MG setup.
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Aniso	  Wilson	  

Aniso	  Clover	  

•  Performance	  gain	  depends	  heavily	  on	  the	  rela$ve	  setup	  cost	  
•  Must	  be	  able	  to	  reuse	  the	  setup	  



Implementa$on	  
•  Wilson/Clover	  MG	  solver	  available	  in	  qopqdp	  (version	  >=	  0.19.1)	  

•  Integra$on	  to	  HMC	  done	  in	  FUEL	  
–  Only	  naïve	  Wilson	  HMC	  is	  available	  
–  Clover	  HMC	  is	  next	  
–  Anisotropy	  is	  also	  implemented	  

•  Gauge	  field	  gets	  updated	  aNer	  every	  solve	  in	  HMC,	  but	  is	  highly	  
correlated	  over	  a	  long	  MD	  $me.	  	  
–  Setup	  is	  done	  at	  light	  dynamical	  mass	  at	  beginning	  of	  trajectory.	  	  
–  Reused	  in	  subsequent	  integra$on	  steps	  and/or	  MD	  trajectories	  un$l	  gain	  

is	  lost	  	  
–  Refresh	  the	  setup	  when	  (trajectory	  $me	  >	  setup	  $me	  +	  1st	  trajectory	  $me)	  
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Challenges	  for	  MG-‐HMC	  
•  Need	  to	  compete	  with	  modern	  HMC	  algorithms	  
•  Hasenbusch	  mass	  precondi$oning	  

	  

•  Fewer	  light	  quark	  solves,	  more	  heavy	  Hasenbusch-‐mass	  
solves.	  MG	  gains	  more	  in	  light	  solves.	  	  
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where κ̃ < κ.
Note: Since the Dirac operator can be rescaled without changing the

physics, we can redefine the preconditioning operator as

W ′ = ρ(1oo + Too) − κ2Moe(1ee + Tee)
−1Meo = M̂ + (ρ − 1)(1oo + Too), (18)

where ρ = κ2/κ̃2.
Generalized to n Hasenbusch mass preconditioners, Eq.(9) becomes

SF [U, {φ†
i ,φi}] = φ†

0

(

[W−1
1 M̂ ][W−1

1 M̂ ]†
)−1

φ0 (19)

+
n−1
∑

i=1

φ†
i

(

[W−1
i+1Wi][W

−1
i+1Wi]

†
)−1

φi (20)

+φ†
n(WnW †

n)−1φn (21)

5 Matrix Inversions in the HMC Evolution

The flow of an HMC evolution goes like the following:

1. A Gaussian-distributed random vector ηi is chosen for each pseud-
ofermion field φi. One is also chosen for the conjugate momentum π,
but let’s ignore this for now.

2. Set up the pseudofermion fields. From Eqs.(19) to (21), we can deter-
mine the corresponding pseudofermion fields:

η0 = (W−1
1 M̂)−1φ0 → φ0 = W−1

1 M̂η0, (22)

ηi = (W−1
i+1)

−1Wiφi → φi = W−1
i+1Wiηi, i = 1, n − 1, (23)

ηn = W−1
n φn → φn = Wnηn. (24)

Thus for n Hasenbusch mass preconditioners, the setup will require
n matrix inversions according to Eqs.(22) and (23).

Note that without the Hasenbusch mass preconditioning, the deter-
mination of the pseudofermion field does not involve any matrix in-
version, as apparent in Eq.(9) where we can set φ = M̂η.

3. Calculate the initial Hamiltonian, which includes the contributions
from the gauge action, the conjugate momentum and the pseud-
ofermion fields. The contribution from the pseudofermion fields in-
volves the following n + 1 matrix inversions:

χ0 = M̂−1(W1φ0) (25)

χi = W−1
i (Wi+1φi) (26)

χn = W−1
n φn (27)

3
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MG-HMC Tests

Meifeng Lin

October 1, 2013

1 Two-Flavor Anisotropic Wilson Lattices

1.1 Regression Tests on 243 × 64 Lattice

First, FUEL HMC code was tested against Chroma by comparing the results
of the plaquette obtained on the 243×64 anisotropic lattices with two-flavors
of unimproved Wilson fermions[1] with a Wilson mass m0 = 0.4125, or a pion
mass of about 420 MeV. In the original simulations of [1], a Hasenbusch
mass of mH = 0.374 was used, and the acceptance they found was around
60% – 70%. There was a disagreement on the critical mass on these lat-
tices: Ref.[1] found that mc ≈ −0.41473, while in Ref.[2], the authors found
that mc = −0.42116(24) using partially quenched measurements.

Lattice 15200 was used as the initial configuration in the FUEL HMC
evolution. The parameters were chosen to be the same as Ref.[1] and are
listed in Table 1. With 100 trajectories, the acceptance is about 65%,
consistent with Ref.[1].

Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
243 × 64 2.38 1 2.4 0.707 10 40 240 1e-8

Table 1: Evolution parameters for the 243 × 64 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

The plaquette values averaged over 101 trajectories (from Traj. 15200
to 15300, inclusive) with näive error analysis (i.e., no binning) are

CHROMA: 0.588047 +/- 1.52093e-05
FUEL: 0.587862 +/- 1.49858e-05

1.2 Tests on 323 × 96 Lattice

The parameters for the 323 × 96 lattices are shown in Table 2.

1
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Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
323 × 96 2.38 1 2.4 0.707 10 60 360 1e-8

Table 2: Evolution parameters for the 323 × 96 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

2 CG vs. BiCGStab

The force in the HMC evolution is defined as the change in the action with
the gauge field

Fµ(x) = −

[

δSF [U,φ,φ†]

δUµ(x)

]T

, (1)

where T denotes matrix transpose. The change in the pseudofermion ac-
tionhas the form

δSF = −φ†(M̂M̂ †)−1δ(M̂M̂ †)(M̂M̂ †)−1φ (2)

= −φ†(M̂M̂ †)−1
[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(M̂M̂ †)−1φ, (3)

where
M̂ = 1oo − κ2MoeMeo (4)

is the even-odd preconditioned Wilson Dirac operator. The hermicity of
M̂M̂ † means that the above can be written as

δSF = −
(

Q−1φ
)†

[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(Q−1φ), (5)

with Q = M̂M̂ †.
We can solve Q−1φ with the regular CG, or we can solve it by solving

M̂−1φ = ψ and then M̂ †−1ψ using BiCGStab. This turns out to make a
big difference. In the test cases, where the HMC evolution was done on
32 BG/Q nodes with 32 MPI processes each node, the average time per
trajectory over roughly 20 trajectories with CG and BiCGStab is 325.927
and 239.296 seconds, respectively. The solve times for the light and heavy
masses are also listed in Table 3.

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 176 121 326

BiCGStab 111 99 239
MG 61 91 187

Table 3: Light and heavy solve times and the trajectory time using CG and
BiCGStab on the 243 × 64 lattices, averaged over roughly 20 trajectories.

On the 323 × 96 lattices, similar speedup is seen, as shown in Table 4.

2

•  Star$ng	  from	  exis$ng	  thermalized	  anisotropic	  2-‐flavor	  Wilson	  
laices.	  (Bulava	  et	  al.	  2009)	  

•  Apples-‐to-‐apples	  comparison:	  use	  the	  same	  HMC	  setup.	  Simply	  
replace	  the	  original	  solver	  with	  MG	  solver	  

•  Pion	  mass	  ~	  420	  MeV.	  Tested	  on	  two	  laice	  volumes.	  	  

•  Run	  on	  32	  BG/Q	  nodes	  with	  32	  MPI	  processes/node	  at	  ALCF.	  	  



MG	  Parameter	  Tuning	  

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3
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•  Many	  parameters	  to	  tune.	  	  
•  Fixed	  nvecs	  =	  24	  in	  Run	  1-‐4,	  and	  16	  in	  Run	  5.	  	  
•  Scanned	  other	  parameters	  to	  find	  the	  best	  set.	  	  
•  Manual	  and	  painful.	  Needs	  a	  bener	  (preferably	  automa$c)	  tuning	  

strategy.	  	  



Tuning	  for	  MG-‐HMC	  

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3
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•  Run	  4	  	  has	  the	  best	  $me	  for	  first	  trajectory,	  but	  deteriorates	  quickly	  
•  Run	  5	  has	  the	  best	  overall	  performance.	  
•  Same	  setup	  can	  be	  used	  for	  3	  trajectories.	  	  



An	  Op$miza$on	  Problem	  
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Figure 1: Single solve time with Multigrid setup in Run 4 (red) and Run
5 (green). The curves from bottom to top correspond to heavy M−1 solve,
heavy M †−1 solve, light M−1 solve, light M †−1 solve.

where a factor of 8 speedup was achieved comparing MG to CG in terms of
floating point operation counts (c.f. Figure 2 in Ref.[3]).

With the setup in Run 5, it is clear that the same setup can be used for
3 trajectories before a refresh is needed. The timing breakdown is shown in
Table 3, which already has the MG setup time included. Note that the wall
clock time speedup for the light solve is on average a factor of 2. However,
there is virtually no speedup for the heavy solves.

3.3 Effects of Source Vectors

Tests were carried out to see how much effect different source vectors
have on the solver. This directly impacts the efficiency of the Multigrid
solver. The tests were done on the anisotropic 32×96 lattices described
earlier. Three types of source vectors were used: a point source vector
δ(x−x0), a random source vector η(x), and a pseudofermion field-like vector
D(x, y)η(y). mg-test was run on cfg. 2300 of the JLab lattices, the timing
is recorded in Table 6 comparing time-to-solution with CG, BiCGStab, and
MG.

4
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•  If	  the	  setup	  is	  tuned	  too	  well	  for	  the	  first	  solve,	  subsequent	  solves	  get	  worse	  
quickly.	  è	  physical	  reasons?	  	  

•  If	  it	  is	  not	  tuned	  well,	  overall	  gain	  is	  small.	  	  
•  It	  is	  tricky	  to	  find	  the	  sweet	  spot.	  	  



MG-‐HMC	  Performance	  

Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
323 × 96 2.38 1 2.4 0.707 10 60 360 1e-8

Table 2: Evolution parameters for the 323 × 96 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

2 CG vs. BiCGStab

The force in the HMC evolution is defined as the change in the action with
the gauge field

Fµ(x) = −

[

δSF [U,φ,φ†]

δUµ(x)

]T

, (1)

where T denotes matrix transpose. The change in the pseudofermion ac-
tionhas the form

δSF = −φ†(M̂M̂ †)−1δ(M̂M̂ †)(M̂M̂ †)−1φ (2)

= −φ†(M̂M̂ †)−1
[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(M̂M̂ †)−1φ, (3)

where
M̂ = 1oo − κ2MoeMeo (4)

is the even-odd preconditioned Wilson Dirac operator. The hermicity of
M̂M̂ † means that the above can be written as

δSF = −
(

Q−1φ
)†

[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(Q−1φ), (5)

with Q = M̂M̂ †.
We can solve Q−1φ with the regular CG, or we can solve it by solving

M̂−1φ = ψ and then M̂ †−1ψ using BiCGStab. This turns out to make a
big difference. In the test cases, where the HMC evolution was done on
32 BG/Q nodes with 32 MPI processes each node, the average time per
trajectory over roughly 20 trajectories with CG and BiCGStab is 325.927
and 239.296 seconds, respectively. The solve times for the light and heavy
masses are also listed in Table 3.

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 176 121 326

BiCGStab 111 99 239
MG 61 91 187

Table 3: Light and heavy solve times and the trajectory time using CG and
BiCGStab on the 243 × 64 lattices, averaged over roughly 20 trajectories.

On the 323 × 96 lattices, similar speedup is seen, as shown in Table 4.

2
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Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3

•  Light	  solve:	  MG	  is	  2x	  faster	  than	  BiCGStab,	  3-‐4x	  faster	  than	  CG	  

•  Speedup	  per	  trajectory	  not	  as	  big	  	  
•  Bonleneck	  is	  heavy	  solves	  è Can	  rebalance	  HMC	  

24^3x64,	  $me	  averaged	  over	  20	  trajectories	  

32^3x96,	  $me	  averaged	  over	  3-‐8	  trajectories	  
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•  Source	  vectors	  have	  linle	  effect	  on	  CG	  or	  MG.	  	  
•  BiCGStab	  converges	  much	  faster	  for	  a	  random	  source	  vector.	  	  



Reversibility	  

Source Vector mass CG [secs] BiCGStab [secs] MG [secs]
δ -0.4125 52.3 52.8 5.4

-0.4135 57.9 59.3 5.5
-0.4145 73.5 62.2 5.7

(physical) -0.4155 87.3 71.4 6.3
-0.4165 112.0 85.2 6.6

(critical) -0.4175 142.2 106.1 7.1
η -0.4125 54.9 15.6 5.5

-0.4135 62.6 17.9 5.7
-0.4145 76.7 21.0 5.9

(physical) -0.4155 94.0 22.0 6.4
-0.4165 117.3 26.0 6.7

(critical) -0.4175 172.6 35.8 7.5
Dη -0.4125 30.8 10.4 4.7

-0.4135 34.3 11.2 4.8
-0.4145 38.2 13.5 4.9

(physical) -0.4155 43.4 16.9 5.3
-0.4165 57.3 17.8 5.5

(critical) -0.4175 68.4 20.2 5.9

Table 6: Time-to-solution for different solvers with different source vectors.

3.4 Reversibility Test

==With MG==
Sold: 22721701.88 Srev: 22721701.88 dS: 1.329928637e-06
Sold: 22725067.11 Srev: 22725067.11 dS: -0.001061491668
Sold: 22713290.68 Srev: 22713290.68 dS: 0.0005583688617
Sold: 22721697.35 Srev: 22721697.35 dS: -0.0001310259104
Sold: 22724432.14 Srev: 22724432.14 dS: -0.0001665465534

==Without MG (BiCGStab)==
Sold: 22721701.88 Srev: 22721701.88 dS: 0.0003642588854
Sold: 22725067.1 Srev: 22725067.1 dS: -0.0002857670188
Sold: 22713290.69 Srev: 22713290.69 dS: -0.0004257671535
Sold: 22721697.35 Srev: 22721697.35 dS: -0.0006039328873
Sold: 22724432.15 Srev: 22724432.15 dS: -0.0003919377923
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•  Will	  reusing	  the	  setup	  affect	  reversibility?	  
•  No	  sign	  so	  far,	  but	  more	  tests	  are	  needed.	  	  



TODO	  

•  Clover	  MG-‐HMC	  
•  Tests	  on	  lighter	  masses	  and	  larger	  volumes.	  	  
•  Retuning	  of	  HMC	  to	  see	  if	  further	  speedup	  is	  possible.	  	  
•  Reuse	  previous	  near-‐null	  vectors	  to	  reduce	  subsequent	  setup	  cost.	  
•  Automa$c	  tuning	  of	  MG	  parameters?	  
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Conclusions	  	  

•  MG-‐HMC	  for	  Wilson	  has	  been	  implemented	  in	  FUEL.	  	  

•  Performance	  at	  a	  pion	  mass	  of	  420	  MeV	  is	  already	  promising.	  

•  Gain	  should	  be	  bener	  with	  lighter	  masses	  and	  larger	  volumes.	  

•  More	  work	  needs	  to	  be	  done	  on	  op$miza$on	  strategies.	  	  	  

10/18/13	   USQCD	  SciDAC	  SoNware	  Workshop,	  
Fermilab,	  October	  18-‐19,	  2013	   14	  


